Parameterized Algorithms for Scalable Interprocedural Data-flow Analysis

Ahmed K. Zaher

July 31st, 2023

Agenda

- Motivation
- 2 The IFDS framework
- Sparsity parameters
- Solving IFDS problems
- 5 Experimental results

Table of Contents

- Motivation
- 2 The IFDS framework
- Sparsity parameters
- 4 Solving IFDS problems
- **5** Experimental results

Back in June of 1996, the Ariane 5 rocket had its first launch.

Back in June of 1996, the Ariane 5 rocket had its first launch.

40 seconds later...

The rocket self destruct due to a <u>software error</u>: an unsafe conversion from 64-bit float to a 16-bit integer was not caught and led to uncontrollable behavior.

This error cost US\$370 million.

Null pointers

A null pointer is a pointer that does not point to anything.

Null pointers

A null pointer is a pointer that does not point to anything.

"You either have to check every reference, or you risk disaster."

Null pointers

A null pointer is a pointer that does not point to anything.

"You either have to check every reference, or you risk disaster."

"I call it my billion-dollar mistake. It was the invention of the null reference in 1965. [...] This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion dollars of pain and damage in the last forty years."

- Tony Hoare

Static program analysis

- Software bugs can incur great costs.
- Programs can be too complicated for humans to catch all bugs.
- We need more formal, automated, methods to do this for us.

Static program analysis

- Software bugs can incur great costs.
- Programs can be too complicated for humans to catch all bugs.
- We need more formal, automated, methods to do this for us.

<u>Static program analysis:</u> the science of automatically finding bugs in programs without running them.

Uses of static program analysis

Static program analysis attempts to answer question like:

- Does the program use a variable x before it is initialized?
- Can the program have a null-pointer dereferencing?
- If expression e is inside a loop, does e's value depend on the loop iteration?

Uses of static program analysis

Static program analysis attempts to answer question like:

- Does the program use a variable x before it is initialized?
- Can the program have a null-pointer dereferencing?
- If expression e is inside a loop, does e's value depend on the loop iteration?

Applications:

- Optimizing compilers.
- IDEs.
- Verification of safety-critical systems.
 - In 2003, Astrée was used to verify the flight control software of Airbus A340.

We will consider the IFDS framework, which captures a large class of useful static analyses such as:

- possibly-uninitialized variables,
- null-pointer,
- reaching definitions,

- available expressions,
- live variables, and
- dead-code elimination.

We will consider the IFDS framework, which captures a large class of useful static analyses such as:

- possibly-uninitialized variables,
- null-pointer,
- reaching definitions,

- available expressions,
- live variables, and
- dead-code elimination.

Setting:

- Large scale. We have a large codebase (e.g., in Google/Meta) on which we want to perform some IFDS analysis.
- On-demand. We receive a large stream of queries (e.g., from developers) inquiring about the analysis result between two particular statements in the codebase.

We will consider the IFDS framework, which captures a large class of useful static analyses such as:

- possibly-uninitialized variables,
- null-pointer,
- reaching definitions,

- available expressions,
- live variables, and
- dead-code elimination.

Setting:

- Large scale. We have a large codebase (e.g., in Google/Meta) on which we want to perform some IFDS analysis.
- On-demand. We receive a large stream of queries (e.g., from developers) inquiring about the analysis result between two particular statements in the codebase.

Standard IFDS algorithms. Authors of IFDS (POPL'95 [1], FSE'95 [2]) gave algorithms to achieve this, but they do not scale to large codebases with over 10^5 LoC.

Idea: exploit sparsity of graphs appearing in the problem.

Graphs that arise in the problem often have nice structures that can enable faster algorithms.

Idea: exploit sparsity of graphs appearing in the problem.

Graphs that arise in the problem often have nice structures that can enable faster algorithms.

Chatterjee (ESOP'20) [3] took this approach.

- They exploited low treewidth of control-flow graphs.
- Pro: fast preprocessing and query time.
- Con: they solve a restricted case of the problem.

Idea: exploit sparsity of graphs appearing in the problem.

Graphs that arise in the problem often have nice structures that can enable faster algorithms.

Chatterjee (ESOP'20) [3] took this approach.

- They exploited low treewidth of control-flow graphs.
- Pro: fast preprocessing and query time.
- Con: they solve a restricted case of the problem.

This work: exploit low treedepth of call graphs to solve the general case.

• Identify a new sparsity parameter: treedepth of the program's call graph.

- Identify a new sparsity parameter: treedepth of the program's call graph.
- Solve the general case of IFDS problems. We exploit this new parameter to develop fast algorithm that extends that of Chatterjee's and solves the general case of IFDS.

- Identify a new sparsity parameter: treedepth of the program's call graph.
- Solve the general case of IFDS problems. We exploit this new parameter to develop fast algorithm that extends that of Chatterjee's and solves the general case of IFDS.
- Experimental results. We experimentally showed on real-world programs that:
 - Call graphs do have low treedepth.
 - Our algorithm outperforms the standard algorithms of [1, 2].

- Identify a new sparsity parameter: treedepth of the program's call graph.
- Solve the general case of IFDS problems. We exploit this new parameter to develop fast algorithm that extends that of Chatterjee's and solves the general case of IFDS.
- Experimental results. We experimentally showed on real-world programs that:
 - Call graphs do have low treedepth.
 - Our algorithm outperforms the standard algorithms of [1, 2].

For a program of n lines:

Approach	General?	Preprocessing	Query
Reps et. al. (POPL'95)	✓	O(n)	
Horwitz et. al. (FSE'95)	✓	O (n)	
Chatterjee et. al. (ESOP'20)	×	O (n)	0 (1)
Our result	✓	O (n)	0(1)

Table of Contents

- Motivation
- 2 The IFDS framework
- Sparsity parameters
- 4 Solving IFDS problems
- **5** Experimental results

Abstractions for programs

We'll need 3 abstractions to formalize the structure of a program:

- Control-flow graphs.
- Supergraphs.
- Call graphs.

A program P with a single function f is formalized by a control-flow graph $G_f = (V_f, E_f)$:

A program P with a single function f is formalized by a <u>control-flow graph</u> $G_f = (V_f, E_f)$:

- V_f corresponds to statements of P.
- $(u_1, u_2) \in E_f$ 1 int add(int a, int b) {
 $(u_1, u_2) \in E_f$ 2 int sum = a;
 represents flow of 3 while (b > 0) {
 control from u_1 to 4 sum = sum + 1; u_2 .

 u_1 int add(int a, int b) { u_2 int sum = a; u_1 int sum = a; u_2 int sum = a; u_2 int sum = a; u_1 int add(int a, int b) { u_2 int sum = a; u_1 int add(int a, int b) { u_2 int sum = a; u_1 int add(int a, int b) { u_2 int sum = a; u_1 int sum = a; u_2 int sum = a; u_3 int sum = a; u_4 in
- G_f has a start 7 return sum; vertex s_f and exit 8 }

A program P with a single function f is formalized by a control-flow graph $G_f = (V_f, E_f)$:

- V_f corresponds to statements of P.
- G_f has a start 7 return sum; vertex s_f and exit 8 } vertex e_f .

Observe:

- A path in $G_f \equiv$ an execution of P.
- The paths in G_f completely characterize f's behavior at runtime.

A program P with a single function f is formalized by a <u>control-flow graph</u> $G_f = (V_f, E_f)$:

- V_f corresponds to statements of P.
- int add(int a, int b) { $(u_1, u_2) \in E_f$ represents flow of 3 while (b > 0) { $control from u_1 to u_2.$
- G_f has a start 7 return sum; vertex s_f and exit 8 }

Analyzing $P \equiv$ compute the meet-over-all-paths (MOP).

Supergraphs

Program consisting of functions f_1,\ldots,f_k is formalized by a <u>supergraph</u> G $G\equiv \mathsf{CFGs}\ G_{f_1},\ldots,G_{f_k}+interprocedural\ edges$

Supergraphs

Program consisting of functions f_1, \ldots, f_k is formalized by a supergraph G

$$\textit{G} \equiv \textit{CFGs} \; \textit{G}_{\textit{f}_1}, \ldots, \textit{G}_{\textit{f}_k} + \textit{interprocedural edges}$$

- A function call from f to f' ≡ two vertices c and r in f.
- Intrerprocedural edges:

```
(c, s_{f'}) and (e_{f'}, r).
```

```
1 void g(int *&a, int *&b) {
2     b = a;
3 }
4
5 int main() {
6     int *a, *b;
7     a = new int(42);
8     g(a, b);
9     *b = 0;
10 }
```


Supergraphs

Program consisting of functions f_1,\ldots,f_k is formalized by a supergraph G

$$\textit{G} \equiv \textit{CFGs} \; \textit{G}_{\textit{f}_1}, \ldots, \textit{G}_{\textit{f}_k} + \textit{interprocedural edges}$$

- A function call from f to f' ≡ two vertices c and r in f.
- Intrerprocedural edges:

```
(c, s_{f'}) and (e_{f'}, r).
```

```
1 void g(int *&a, int *&b) {
2     b = a;
3 }
4
5 int main() {
6     int *a, *b;
7     a = new int(42);
8     g(a, b);
9     *b = 0;
10 }
```


Question: a path in $G \equiv$ an execution of P?

Invalid paths

- In a CFG, any path can be realized.
- In a supergraph, need to be more careful..

Invalid paths

- In a CFG, any path can be realized.
- In a supergraph, need to be more careful..

Invalid paths

- In a CFG, any path can be realized.
- In a supergraph, need to be more careful..

Invalid paths

- In a CFG, any path can be realized.
- In a supergraph, need to be more careful..

Invalid paths

- In a CFG, any path can be realized.
- In a supergraph, need to be more careful..

- An interprocedurally valid path (IVP) is a path where returns are to the correct matching calls.
- An IVP in $G \equiv$ an execution of P.

Invalid paths

- In a CFG, any path can be realized.
- In a supergraph, need to be more careful..

Analyzing $P \equiv$ compute the meet-over-all-valid-paths (MIVP).

Call graphs

A Call graph $C = (F, E_C)$ has:

- Vertices are functions of the program.
- $(f, f') \in E_C \equiv$ there is a call from some line in f to f'.

```
1 void h() {}
2
3 void f() {
4      g();
5      h();
6 }
7
8 void g() {
9      h();
10 }
```


Call graphs

A Call graph $C = (F, E_C)$ has:

- Vertices are functions of the program.
- $(f, f') \in E_C \equiv$ there is a call from some line in f to f'.

```
1 void h() {}
2
3 void f() {
4      g();
5      h();
6 }
7
8 void g() {
9      h();
10 }
```


- The call graph can be inferred from the supergraph.
- Describes program's behavior at the function level.

In an IFDS problem, the input is:

- Supergraph G = (V, E).
- Finite set of data-facts D.
- Each edge $e = (I, I') \in E$ has a flow function $M_e : 2^D \to 2^D$.
- *Meet* operator $\sqcap \in \{\cup, \cap\}$.
- M_e distributes over \sqcap , i.e., $M_e(D_1 \sqcap D_2) = M_e(D_1) \sqcap M_e(D_2)$.

To <u>solve</u> the IFDS problem: compute at each program point (vertex) which data-facts hold.

IFDS problems: example

Example: null-pointer analysis.

- D = set of variables in the program.
- A solution: for every $l \in V$, compute $S_l \subseteq D$, the set of variable that may be null after l if we start execution from main.

```
1 void g(int *&a, int *&b) {
2     b = a;
3 }
4
5 int main() {
6     int *a, *b;
7     a = new int(42);
8     g(a, b);
9     *b = 0;
10 }
```

IFDS problems: example

Example: null-pointer analysis.

- D = set of variables in the program.
- A solution: for every $l \in V$, compute $S_l \subseteq D$, the set of variable that may be null after l if we start execution from main.

```
1 void g(int *&a, int *&b) {
  int main()
     int *a, *b;
  a = new int(42);
  g(a, b);
   *b = 0;
10 }
```


IFDS problems: formalizing a solution

More formally:

• For a path $\pi = e_1 \cdot e_2 \cdots e_k$ in G, define:

$$M_{\pi} = M_{e_k} \circ M_{e_k} \circ \cdots \circ M_{e_1}.$$

• For $u_1, u_2 \in V$, define:

$$\mathsf{IVP}(u_1,u_2) = \\ \{P \mid P \text{ is an IVP from } u_1 \text{ to } u_2 \text{ in } G\}.$$

• For $u_1, u_2 \in V$ and $D_1 \subseteq D$, we want to compute:

$$\texttt{MIVP}(u_1,D_1,u_2) := \bigcap_{\pi \in \texttt{IVP}(u_1,u_2)} M_\pi(D_1)$$

• We'll assume wlog that $\sqcap = \cup$.

IFDS problem

Input: $\langle G = (V, E), D, \{M_e\}_{e \in E} \rangle$ queries of the form $\langle u_1, D_1, u_2 \rangle$.

Output: for each query $\langle u_1, D_1, u_2 \rangle$, return:

 $\mathtt{MIVP}(u_1,D_1,u_2).$

IFDS problem

Input: $\langle G = (V, E), D, \{M_e\}_{e \in E} \rangle$ queries of the form $\langle u_1, D_1, u_2 \rangle$.

Output: for each query $\langle u_1, D_1, u_2 \rangle$, return:

$$\mathtt{MIVP}(u_1,D_1,u_2).$$

Objective: develop an algorithm that has:

- Lightweight preprocessing phase after which,
- Queries can be answered as fast as possible.

IFDS problem

Input: $\langle G = (V, E), D, \{M_e\}_{e \in E} \rangle$ queries of the form $\langle u_1, D_1, u_2 \rangle$.

Output: for each query $\langle u_1, D_1, u_2 \rangle$, return:

$$MIVP(u_1, D_1, u_2).$$

Objective: develop an algorithm that has:

- Lightweight preprocessing phase after which,
- Queries can be answered as fast as possible.

In the remainder of this talk, we will give a series of observations, each of which give us a simpler problem to solve.

Where we are

Computing meet-over-all-valid-paths in the supergraph

Where we are

But first, let's introduce sparsity parameters..

Table of Contents

- Motivation
- 2 The IFDS framework
- Sparsity parameters
- 4 Solving IFDS problems
- 5 Experimental results

- Treewidth measures "tree-likeness" of a graph.
- Graphs of small treewidth are tree-like.
- Graph problems are typically easier on trees.
- Similarly, graph problems are also typically easier on graphs of low treewidth.

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree $T = (\mathfrak{B}, E_T)$:

- **①** Every node $b \in \mathfrak{B}$ of the tree T has a corresponding $bag\ V_b \subseteq V$.
- $\exists u,v \in V, \{u,v\} \in E \implies \exists b \in \mathfrak{B} \ \{u,v\} \subseteq V_b.$
- **③** $\forall v \in V, \{b \in \mathfrak{B} | v \in V_b\}$ forms a connected subtree of T.

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree $T = (\mathfrak{B}, E_T)$:

- **①** Every node $b \in \mathfrak{B}$ of the tree T has a corresponding $bag\ V_b \subseteq V$.
- $\exists v, v \in V, \{u, v\} \in E \implies \exists b \in \mathfrak{B} \ \{u, v\} \subseteq V_b.$
- $\forall v \in V, \{b \in \mathfrak{B} | v \in V_b\}$ forms a connected subtree of T.

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree $T = (\mathfrak{B}, E_T)$:

- **1** Every node $b \in \mathfrak{B}$ of the tree T has a corresponding $bag\ V_b \subseteq V$.
- $\exists u,v \in V, \{u,v\} \in E \implies \exists b \in \mathfrak{B} \ \{u,v\} \subseteq V_b.$

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree $T = (\mathfrak{B}, E_T)$:

- **1** Every node $b \in \mathfrak{B}$ of the tree T has a corresponding $bag\ V_b \subseteq V$.

- \bullet $\forall v \in V, \{b \in \mathfrak{B} | v \in V_b\}$ forms a connected subtree of T.

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree $T = (\mathfrak{B}, E_T)$:

- **①** Every node $b \in \mathfrak{B}$ of the tree T has a corresponding $bag\ V_b \subseteq V$.
- $\exists v u, v \in V, \{u, v\} \in E \implies \exists b \in \mathfrak{B} \ \{u, v\} \subseteq V_b.$
- $\forall v \in V, \{b \in \mathfrak{B} | v \in V_b\}$ forms a connected subtree of T.

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree $T = (\mathfrak{B}, E_T)$:

- **①** Every node $b \in \mathfrak{B}$ of the tree T has a corresponding $bag\ V_b \subseteq V$.
- $\exists v, v \in V, \{u, v\} \in E \implies \exists b \in \mathfrak{B} \ \{u, v\} \subseteq V_b.$

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree $T = (\mathfrak{B}, E_T)$:

- **①** Every node $b \in \mathfrak{B}$ of the tree T has a corresponding $bag\ V_b \subseteq V$.

- $\bullet \forall v \in V, \{b \in \mathfrak{B} | v \in V_b\}$ forms a connected subtree of T.

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree $T = (\mathfrak{B}, E_T)$:

- **①** Every node $b \in \mathfrak{B}$ of the tree T has a corresponding $bag\ V_b \subseteq V$.
- $\exists u,v \in V, \{u,v\} \in E \implies \exists b \in \mathfrak{B} \ \{u,v\} \subseteq V_b.$
- **③** $\forall v \in V, \{b \in \mathfrak{B} | v \in V_b\}$ forms a connected subtree of T.

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree $T = (\mathfrak{B}, E_T)$:

- **①** Every node $b \in \mathfrak{B}$ of the tree T has a corresponding $bag\ V_b \subseteq V$.

- **③** $\forall v \in V, \{b \in \mathfrak{B} | v \in V_b\}$ forms a connected subtree of T.

The width of T is $\max_{b \in \mathfrak{B}} |V_b| - 1$.

The *treewidth* of G is the smallest width among all TDs over G.

This TD has width 2 and is optimal \implies the graph has treewidth 2.

Cut property of TDs

$$V_b \cap V_{b'}$$
 separates $\bigcup_{c \in T^b} V_c$ from $\bigcup_{c \in T^{b'}} V_c$.

Cut property of TDs

$$V_b \cap V_{b'}$$
 separates $\bigcup_{c \in T^b} V_c$ from $\bigcup_{c \in T^{b'}} V_c$.

Cut property of TDs

$$V_b \cap V_{b'}$$
 separates $\bigcup_{c \in T^b} V_c$ from $\bigcup_{c \in T^{b'}} V_c$.

Cut property of TDs

$$V_b \cap V_{b'}$$
 separates $\bigcup_{c \in T^b} V_c$ from $\bigcup_{c \in T^{b'}} V_c$.

- Treedepth measures how much a graph resembles a shallow tree.
- Graphs of small treedepth have simpler structure.

Partial Order Trees (POTs)

Given a graph G=(V,E), a partial order tree over G is a rooted tree $T=(V,E_T)$ where

 $(u,v) \in E \implies u$ and v are in an ancestor-descendant relationship in T.

Partial Order Trees (POTs)

Given a graph G=(V,E), a partial order tree over G is a rooted tree $T=(V,E_T)$ where

 $(u,v) \in E \implies u$ and v are in an ancestor-descendant relationship in T.

Partial Order Trees (POTs)

Given a graph G=(V,E), a partial order tree over G is a rooted tree $T=(V,E_T)$ where

 $(u,v) \in E \implies u$ and v are in an ancestor-descendant relationship in T.

Partial Order Trees (POTs)

Given a graph G=(V,E), a partial order tree over G is a rooted tree $T=(V,E_T)$ where

 $(u, v) \in E \implies u$ and v are in an ancestor-descendant relationship in T.

The *treedepth* of G is the smallest depth among all POTs over G. This POT has depth 3 and is optimal \implies the graph has treedepth 3.

Cut property of POTs

Consider G = (V, E) and a POT $T = (V, E_T)$ over it. For any $u, v \in V$, let A be the set of common ancestors of u and v in T. For any path ρ from u to v in G, we have:

$$A \cap \rho \neq \emptyset$$

Cut property of POTs

Consider G = (V, E) and a POT $T = (V, E_T)$ over it. For any $u, v \in V$, let A be the set of common ancestors of u and v in T. For any path ρ from u to v in G, we have:

$$A \cap \rho \neq \emptyset$$

Cut property of POTs

Cut property of POTs

Consider G = (V, E) and a POT $T = (V, E_T)$ over it. For any $u, v \in V$, let A be the set of common ancestors of u and v in T. For any path ρ from u to v in G, we have:

$$A \cap \rho \neq \emptyset$$

Cut property of POTs

Cut property of POTs

Consider G = (V, E) and a POT $T = (V, E_T)$ over it. For any $u, v \in V$, let A be the set of common ancestors of u and v in T. For any path ρ from u to v in G, we have:

$$A \cap \rho \neq \emptyset$$

Cut property of POTs

Cut property of POTs

Consider G = (V, E) and a POT $T = (V, E_T)$ over it. For any $u, v \in V$, let A be the set of common ancestors of u and v in T. For any path ρ from u to v in G, we have:

$$A \cap \rho \neq \emptyset$$

Exploiting sparsity

Idea: exploit sparsity of graphs that arise the program.

In CFGs: each if/while-node has 2 outgoing edges, others have only 1.

In call graphs: we don't expect a function to call a lot of other functions.

Exploiting sparsity

Idea: exploit sparsity of graphs that arise the program.

In CFGs: each if/while-node has 2 outgoing edges, others have only 1.

In call graphs: we don't expect a function to call a lot of other functions.

Magic formula

For any problem involving graphs:

input graphs are sparse \land problem is simpler on sparse graphs \implies faster algorithms

Applying the formula

Applying the magic formula on CFGs:

- CFGs have small treewidth, shown by Thorup (Inf. Comput.'98) [4].
- Chattarjee et al. (ESOP'20) used this to develop an algorithm with:
 - ▶ Preprocessing in $O(n \cdot D^3)$ time and $O(\lceil \frac{D}{\lg n} \rceil)$ time per query.
 - Can only answer <u>same-context queries</u>.
 - Used by our algorithm as a black box.

Applying the formula

Applying the magic formula on CFGs:

- CFGs have small treewidth, shown by Thorup (Inf. Comput. '98) [4].
- Chattarjee et al. (ESOP'20) used this to develop an algorithm with:
 - ▶ Preprocessing in $O(n \cdot D^3)$ time and $O(\lceil \frac{D}{\lg n} \rceil)$ time per query.
 - ► Can only answer <u>same-context queries</u>.
 - Used by our algorithm as a black box.

Applying the magic formula on call graphs:

- Call graphs have small treedepth.
- Experimentally: We analyzed program from DaCapo,
 - ▶ Avg. # of functions = 803.1.
 - ► Avg. treedepth = 43.8.
 - Max. treedepth = 135.
- Intuition: functions are developed in chronological order, each function uses a small subset of previously-developed functions as a library.
- In general, we expect treedepth to scale very slowly with program size.

Extra input

Our algorithm uses both parameters, so we'll assume:

- For every function $f \in F$, we are given a TD T_f of f's CFG G_f , and T_f has small width tw.
- We are given a POT T over the call graph C, and T has small depth td.

Extra input

Our algorithm uses both parameters, so we'll assume:

- For every function $f \in F$, we are given a TD T_f of f's CFG G_f , and T_f has small width tw.
- We are given a POT T over the call graph C, and T has small depth td.

We know that such T_f 's and T exist, but how to compute them?

- This is NP-hard in general.
- There are efficient algorithms that compute a TD/POT if its width/depth is small [5, 6].
- In our experiments, we use heuristic solvers.

Where we are

Computing meet-over-all-valid-paths in the supergraph

TDs over CFGs

POT over C

Table of Contents

- Motivation
- 2 The IFDS framework
- Sparsity parameters
- Solving IFDS problems
- 5 Experimental results

IFDS problems

IFDS problem

 $\textbf{Input} \colon \langle \textit{G} = (\textit{V}, \textit{E}), \textit{D}, \{\textit{M}_e\}_{e \in \textit{E}} \rangle \text{ queries of the form } \langle \textit{u}_1, \textit{D}_1, \textit{u}_2 \rangle.$

Output: for each query $\langle u_1, D_1, u_2 \rangle$, return:

 $\mathtt{MIVP}(u_1,D_1,u_2).$

Simplification via distributivity

• Flow functions are distributive:

$$M_e(\{d_1,\ldots,d_k\}) = M_e(\emptyset) \cup M_e(\{d_1\}) \cup \cdots \cup M_e(\{d_k\})$$

 \implies It suffices to know $M_e(\emptyset)$ and $M_e(\{d\})$ for every $d \in D$.

Simplification via distributivity

Flow functions are distributive:

$$M_e(\{d_1,\ldots,d_k\}) = M_e(\emptyset) \cup M_e(\{d_1\}) \cup \cdots \cup M_e(\{d_k\})$$

 \implies It suffices to know $M_e(\emptyset)$ and $M_e(\{d\})$ for every $d \in D$.

• Can represent a function with a bipartite graph of sides $D^* := D \cup \{\mathbf{0}\}$:

Simplification via distributivity

• Flow functions are distributive:

$$M_e(\{d_1,\ldots,d_k\}) = M_e(\emptyset) \cup M_e(\{d_1\}) \cup \cdots \cup M_e(\{d_k\})$$

 \implies It suffices to know $M_e(\emptyset)$ and $M_e(\{d\})$ for every $d \in D$.

ullet Can represent a function with a bipartite graph of sides $D^*:=D\cup\{{f 0}\}$:

ullet Compositions of functions \equiv reachability of their representation:

Exploded supergraphs

Replace each edge in a supergraph G=(V,E) with their graph representation, which gives an exploded supergraph $G=(V\times D^*,\overline{E})$:

Exploded supergraphs

Replace each edge in a supergraph G=(V,E) with their graph representation, which gives an exploded supergraph $G=(V\times D^*,\overline{E})$:

Exploded supergraphs

Replace each edge in a supergraph G=(V,E) with their graph representation, which gives an exploded supergraph $G=(V\times D^*,\overline{E})$:

 $\mathbb{Q}((u_1,d_1),(u_2,d_2)):=1$ iff there is an IVP from (u_1,d_1) to (u_2,d_2) in \overline{G} .

Exploded supergraphs: example

- $d_2 =$ "b may be null"
- $Q((v_5, \mathbf{0}), (c_8, d_2)) = 1 \implies$ b may be null after line 7.
- $Q((v_5, \mathbf{0}), (r_8, d_2)) = 0 \implies b$ is not null after returning from call to g.

```
1 void g(int *&a, int *&b) {
2     b = a;
3 }
4
5 int main() {
6     int *a, *b;
7     a = new int(42);
8     g(a, b);
9     *b = 0;
10 }
```


IFDS problems

Simpler problem: checking existence of an IVP in \overline{G} .

IFDS problem #2

Input: $\langle \overline{G} \rangle$ and queries of the form $\langle (u_1, d_1), (u_2, d_2) \rangle$.

Output: for each query $\langle (u_1, d_1), (u_2, d_2) \rangle$, return:

 $Q((u_1, d_1), (u_2, d_2)).$

Where we are

Same-context paths

A <u>same-context path</u> (SCP) in G/\overline{G} is a special IVP that keeps the call-stack intact.

Same-context paths

A same-context path (SCP) in G/\overline{G} is a special IVP that keeps the call-stack intact.

Same-context paths

A <u>same-context path</u> (SCP) in G/\overline{G} is a special IVP that keeps the call-stack intact.

 $\mathtt{SCQ}((u_1,d_1),(u_2,d_2)):=1 \text{ iff there is an SCP from } (u_1,d_1) \text{ to } (u_2,d_2) \text{ in } \overline{G}.$

Idea: consider an IVP π in \overline{G} , there are two types of call nodes in π :

- Temporary calls: calls c with a corresponding return node r later in π .
- Persistent calls: no corresponding return.

Idea: consider an IVP π in \overline{G} , there are two types of call nodes in π :

- Temporary calls: calls c with a corresponding return node r later in π .
- Persistent calls: no corresponding return.

Canonical partition

 π can always be written as:

$$\pi = \Sigma_1 \cdot c_1 \cdot \Sigma_2 \cdot c_2 \cdots \Sigma_k \cdot c_k \cdot \Sigma_{k+1}$$

Where c_1, \ldots, c_k are the *persistent* calls in π .

$$\pi = (\Sigma_1 \cdot c_1) \cdot (\Sigma_2 \cdot c_2) \cdots (\Sigma_k \cdot c_k) \cdot \Sigma_{k+1}$$

Assumption: suppose π begins and ends at some start-node.

$$\pi = (\Sigma_1 \cdot c_1) \cdot (\Sigma_2 \cdot c_2) \cdots (\Sigma_k \cdot c_k) \cdot \Sigma_{k+1}$$

Assumption: suppose π begins and ends at some start-node.

$$\pi = (\Sigma_1 \cdot c_1) \cdot (\Sigma_2 \cdot c_2) \cdots (\Sigma_k \cdot c_k) \cdot \Sigma_{k+1}$$

Observation #1: each $\Sigma_i \cdot c_i$ is a same-context path.

$$\pi = (\Sigma_1 \cdot c_1) \cdot (\Sigma_2 \cdot c_2) \cdots (\Sigma_k \cdot c_k) \cdot \Sigma_{k+1}$$

Observation #2: c_i calls $f_{i+1} \implies (f_i, f_{i+1})$ is an edge of the call graph.

$$\pi = (\Sigma_1 \cdot c_1) \cdot (\Sigma_2 \cdot c_2) \cdots (\Sigma_k \cdot c_k) \cdot \Sigma_{k+1}$$

Exploded call graph \overline{C} : each edge abstracts a segment $\sum_{i} \cdot c_{i} \cdot s_{f_{i+1}}$. f_3 f_{k+1}

$$\pi = (\Sigma_1 \cdot c_1) \cdot (\Sigma_2 \cdot c_2) \cdots (\Sigma_k \cdot c_k) \cdot \Sigma_{k+1}$$

Exploded call graph \overline{C} : each edge abstracts a segment $\sum_{i} \cdot c_{i} \cdot s_{f_{i+1}}$. f_2 f_3 f_{k+1}

$$\pi = (\Sigma_1 \cdot c_1) \cdot (\Sigma_2 \cdot c_2) \cdots (\Sigma_k \cdot c_k) \cdot \Sigma_{k+1}$$

Exploded call graph \overline{C} : each edge abstracts a segment $\sum_{i} \cdot c_{i} \cdot s_{f_{i+1}}$. f_2 f_3 f_{k+1}

$$\pi = (\Sigma_1 \cdot c_1) \cdot (\Sigma_2 \cdot c_2) \cdots (\Sigma_k \cdot c_k) \cdot \Sigma_{k+1}$$

Exploded call graphs

For a call graph $C=(F,E_C)$, an exploded call graph $\overline{C}=(F\times D^*,\overline{E_C})$ has $((f_1,d_1),(f_2,d_2))\in \overline{E_C}$ iff there is a $(c,d_3)\in V_f\times D^*$ s.t.

• $SCQ((s_{f_1}, d_1), (c, d_3))$

• (c, d_3) calls (s_{f_2}, d_2) .

Exploded call graphs

For a call graph $C = (F, E_C)$, an exploded call graph $\overline{C} = (F \times D^*, \overline{E_C})$ has $((f_1, d_1), (f_2, d_2)) \in \overline{E_C}$ iff there is a $(c, d_3) \in V_f \times D^*$ s.t.

• $SCQ((s_{f_1}, d_1), (c, d_3))$

• (c, d_3) calls (s_{f_2}, d_2) .

Exploded call graphs

For a call graph $C = (F, E_C)$, an exploded call graph $\overline{C} = (F \times D^*, \overline{E_C})$ has $((f_1, d_1), (f_2, d_2)) \in \overline{E_C}$ iff there is a $(c, d_3) \in V_f \times D^*$ s.t.

• $SCQ((s_{f_1}, d_1), (c, d_3))$

• (c, d_3) calls (s_{f_2}, d_2) .

$$\forall \langle (s_{f_u},d_1),(s_{f_v},d_2) \rangle, \ \ \mathbb{Q}((s_{f_u},d_1),(s_{f_v},d_2)) = (f_u,d_1) \rightsquigarrow_{\overline{C}} (f_v,d_2).$$

Exploded call graph

We now have two subproblems to answer queries of the form

$$\langle (s_{f_u}, d_1), (s_{f_v}, d_2) \rangle$$
,

- **①** Computing the exploded call graph \overline{C} .
- ② Answering reachability queries on \overline{C} .

Where we are

Recall, $((f_1, d_1), (f_2, d_2)) \in \overline{E_C}$ iff there is a $(c, d_3) \in V_f \times D^*$ s.t

• $SCQ((s_{f_1}, d_1), (c, d_3))$

• (c, d_3) calls (s_{f_2}, d_2) .

Recall, $((f_1, d_1), (f_2, d_2)) \in \overline{E_C}$ iff there is a $(c, d_3) \in V_f \times D^*$ s.t

- $SCQ((s_{f_1}, d_1), (c, d_3))$ (c, d_3) calls (s_{f_2}, d_2) .
- We already have an algorithm of Chatterjee to answer $SCQ((s_{f_1}, d_1), (c, d_3))$.

Recall, $((f_1, d_1), (f_2, d_2)) \in \overline{E_C}$ iff there is a $(c, d_3) \in V_f \times D^*$ s.t

- $SCQ((s_{f_1}, d_1), (c, d_3))$ (c, d_3) calls (s_{f_2}, d_2) .
- We already have an algorithm of Chatterjee to answer $SCQ((s_{f_1}, d_1), (c, d_3))$. We'll use it as a black box.

Recall, $((f_1, d_1), (f_2, d_2)) \in \overline{E_C}$ iff there is a $(c, d_3) \in V_f \times D^*$ s.t

• $SCQ((s_{f_1}, d_1), (c, d_3))$

• (c, d_3) calls (s_{f_2}, d_2) .

We already have an algorithm of Chatterjee to answer $SCQ((s_{f_1}, d_1), (c, d_3))$. We'll use it as a black box.

Algorithm:

- Iterate over all possible $((f_1, d_1), (c, d_3))$.
 - ② Invoke Chatterjee's algorithm to compute $SCQ((s_f, d_1), (c, d_3))$.
 - **3** If it returns 1, add the corresponding $((f_1, d_1), (f_2, d_2))$ to \overline{C} .

Where we are

Checking reachability in \overline{C}

Reachability on \overline{C}

Input: $\langle \overline{C} \rangle$ and queries of the form $\langle (f_u, d_1), (f_v, d_2) \rangle$.

Output: for each query $\langle (f_u, d_1), (f_v, d_2) \rangle$, return:

$$(f_u, d_1) \leadsto_{\overline{C}} (f_v, d_2).$$

Checking reachability in \overline{C}

We have a POT T over C: explode it into a POT \overline{T} over \overline{C} .

Checking reachability in \overline{C}

We have a POT T over C: explode it into a POT \overline{T} over \overline{C} .

T has depth td $\Longrightarrow \overline{T}$ has depth td $\cdot D$, which is still small.

Exploiting treedepth

Reachability on \overline{C} using POT \overline{T}

Input: $\langle \overline{C}, \overline{T} \rangle$ and queries of the form $\langle (f_u, d_1), (f_v, d_2) \rangle$.

Output: for each query $\langle (f_u, d_1), (f_v, d_2) \rangle$, return:

$$(f_u, d_1) \leadsto_{\overline{C}} (f_v, d_2).$$

Let $\overline{F}_u^{\downarrow}$ be the set of descendants of u in \overline{T} .

For every u and every descendant v of it, define:

$$up[u,v] := egin{cases} 1 & \text{there is a path from } v \text{ to } u \text{ in } \overline{C}[\overline{F}_u^\downarrow] \\ 0 & \text{otherwise} \end{cases}.$$

For every u and every descendant v of it, define:

$$\mathit{down}[u,v] := egin{cases} 1 & \text{there is a path from } u \text{ to } v \text{ in } \overline{C}[\overline{F}_u^\downarrow] \\ 0 & \text{otherwise} \end{cases}.$$

Preprocessing: compute up and down.

Preprocessing: compute up and down.

- $down[u,\cdot]$ is computed by a DFS from u, ignoring edges leaving $\overline{C}[\overline{F}_u^{\downarrow}]$.
- $up[u,\cdot]$ is similarly computed by reversing edges of \overline{C} .

Preprocessing: compute up and down.

- $down[u,\cdot]$ is computed by a DFS from u, ignoring edges leaving $\overline{C}[\overline{F}_u^{\downarrow}]$.
- $up[u,\cdot]$ is similarly computed by reversing edges of \overline{C} .

Each edge is traversed $O(\text{depth of } \overline{T}) = O(\text{td} \cdot D)$ times.

 \implies up and down can be computed in $O(n \cdot D^3 \cdot {\tt td})$ time.

For any u, v in \overline{C} , let A be the set of their common ancestors in \overline{T} .

By the cut property of POTs, any path ρ from u to v in \overline{C} has:

$$\rho \cap A \neq \emptyset$$

Let $w \in A$ be the highest node in $\rho \cap A$.

We must have:

$$up[w, u] = 1 \wedge down[w, v] = 1.$$

$$u \rightsquigarrow_{\overline{C}} v \text{ iff } \exists w \in A \text{ s.t. } up[w, u] = 1 \land down[w, v] = 1.$$

To answer a query $\langle u, v \rangle$: we iterate over w and check if $up[w, u] = 1 \wedge down[w, v] = 1$ \implies query time $O(\operatorname{depth} \text{ of } \overline{T}) = O(\operatorname{td} \cdot D)$.

Where we are

Answering a general query on \overline{G}

 \overline{C} helps us compute $\mathbb{Q}((s_{f_u},d_1),(s_{f_v},d_2))$, which is a restricted form.

Answering a general query on \overline{G}

 \overline{C} helps us compute $\mathbb{Q}((s_{f_u},d_1),(s_{f_v},d_2))$, which is a restricted form.

To compute $Q((u_1, d_1), (u_2, d_2))$:

- Iterate over calls (c, d_3) in the same function as u_1 .
- If (c, d_3) calls $(s_{f'}, d_4)$, perform:
 - ▶ Same-context query: check $SCQ((u_1, d_1), (c, d_3))$.
 - ▶ Reachability query on \overline{C} : check $(f', d_4) \rightsquigarrow_{\overline{C}} (f_2, d_5)$, and
 - ▶ Same-context query: check $SCQ((s_{f_2}, d_5), (u_2, d_2))$.

Answering a general query on \overline{G}

Done!

Runtime

- Preprocessing: $O(n \cdot D^3 \cdot td)$.
- Query: $O(D^3 \cdot td)$.

where:

- n = # lines in the program
- D number of possible data facts.
- td = treedepth of the call graph.

Runtime

- Preprocessing: $O(n \cdot D^3 \cdot td)$. $\leftarrow O(n)$ in practice.
- Query: $O(D^3 \cdot td)$. $\leftarrow O(1)$ in practice.

where:

- n =# lines in the program
- D number of possible data facts.
- td = treedepth of the call graph.

Table of Contents

- Motivation
- 2 The IFDS framework
- Sparsity parameters
- 4 Solving IFDS problems
- 5 Experimental results

Experiments: setup

- Ran the algorithm on real-world programs from DaCapo benchmarks.
- Extracted the CFGs and call graph using Soot.
- Used PACE solvers [7, 8] to compute:
 - ▶ TDs of the CFGs of small width.
 - POT over the call graph of small depth.
- On each benchmark we ran reachability, null-pointer, and possibly-uninitialized variables analyses.
- \bullet For a program of n lines, we generate n random queries.
- Ran each analysis on:
 - (PARAM) our algorithm,
 - ▶ (IFDS) standard IFDS algorithm [1], and
 - ▶ (DEM) its demand version [2].

timing out at 10 minutes.

Experiments: results

Average/maximum are over 13 programs from DaCapo benchmarks.

- |V| (\approx lines of code):
 - ► Average: 22.7K.
- Number of functions:
 - ► Average: 803.1.
- Treewidth of CFGs:
 - ▶ Average: 9.1.
- Treedepth of call graphs:
 - Average: 43.8.

- ► Maximum: 58.5K.
- ► Maximum: 2028.
- Maximum: 10.
- ► Maximum: 135.

Experiments: reachability

Preprocessing:

Average: 0.93s.

• Maximum: 1.53s.

Query:

Average: 0.11ms.

Maximum: 0.53ms.

IFDS's query:

Average: 12.3ms.

Maximum: 33.80ms.

IFDS/PARAM: 390.55.

Experiments: reachability analysis

Preprocessing:

Average: 0.93s.
 Maximum: 1.53s.

Query:

Average: 0.11ms.Maximum: 0.53ms.

DEM's query:

Average: 26.36ms.Maximum: 70.91ms.

DEM/PARAM: 848.13.

Experiments: null-pointer analysis

Preprocessing:

Average: 41.80s.
 Maximum: 140.85s.

Query:

Average: 5.84ms.Maximum: 27.63ms.

IFDS's query:

Average: 299.91ms.
 Maximum: 932.04ms.

IFDS/PARAM: 202.92.

Experiments: null-pointer analysis

Preprocessing:

Average: 41.80s.
 Maximum: 140.85s.

Query:

Average: 5.84ms.Maximum: 27.63ms.

DEM's query:

Average: 75.58ms.
 Maximum: 221.58ms.

DEM/PARAM: 56.86.

Experiments: possibly-uninitialized variables analysis

Preprocessing:

• Average: 89.44s.

Maximum: 265.31.

Query:

Average: 10.39ms.

Maximum: 43.70ms.

IFDS's query:

Average: 543.53ms.

Maximum: 2221.90ms.

IFDS/PARAM: 143.96

Experiments: possibly-uninitialized variables analysis

Preprocessing:

Average: 89.44s.

Maximum: 265.31.

Query:

Average: 10.39ms.

Maximum: 43.70ms.

DEM's query:

Average: 97.54ms.

Maximum: 255.86ms

DEM/PARAM: 27.25.

Conclusion

- Identify and exploit a new sparsity parameter: treedepth of call graphs.
- Fast parameterized algorithm for general on-demand IFDS.
- Theoretical improvement over previous works.
- Experimentally outperforming the standard IFDS algorithms by two orders of magnitude.

General?	Preprocessing	Query
✓	$O\left(n\cdot D^3\right)$	
✓	$O(n \cdot D^3)$	
Х	$O(n \cdot D^3)$	$O(\lceil D/\lg n \rceil)$
✓	$O(n \cdot D^3 \cdot td)$	$O\left(D^3 \cdot \mathtt{td}\right)$
	General? ✓ ✓ ✓ ✓	\checkmark $O(n \cdot V)$ $O(n \cdot V)$

Publications

- A.K. Goharshady, A.K. Zaher, "Efficient Interprocedural Data-Flow Analysis using Treedepth and Treewidth," in VMCAI'23.
- G.K. Conrado, A.K. Goharshady, K. Kochekov, Y.C. Tsai, A.K. Zaher, "Exploiting the Sparseness of Control-flow and Call Graphs for Efficient and On-demand Algebraic Program Analysis," in OOPSLA'23.

References

- [1] T. W. Reps, S. Horwitz, and S. Sagiv, "Precise interprocedural dataflow analysis via graph reachability," in POPL, 1995, pp. 49–61.
- [2] S. Horwitz, T. W. Reps, and S. Sagiv, "Demand interprocedural dataflow analysis," in FSE, 1995, pp. 104–115.
- [3] K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and A. Pavlogiannis, "Optimal and perfectly parallel algorithms for on-demand data-flow analysis," in ESOP, 2020, pp. 112–140.
- [4] M. Thorup, "All structured programs have small tree-width and good register allocation," Inf. Comput., vol. 142, no. 2, pp. 159–181, 1998.
- [5] H. L. Bodlaender, "A linear time algorithm for finding tree-decompositions of small treewidth," in STOC, 1993, pp. 226–234.
- [6] W. Nadara, M. Pilipczuk, and M. Smulewicz, "Computing treedepth in polynomial space and linear FPT time," CoRR, vol. abs/2205.02656, 2022.
- [7] H. Dell, C. Komusiewicz, N. Talmon, and M. Weller, "The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration," in <u>IPEC</u>, 2018, pp. 30:1–30:12.
- [8] Łukasz Kowalik, M. Mucha, W. Nadara, M. Pilipczuk, M. Sorge, and P. Wygocki, "The PACE 2020 Parameterized Algorithms and Computational Experiments Challenge: Treedepth," in IPEC, 2020, pp. 37:1–37:18.