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Maiden flight of Ariane 5

Back in June of 1996, the Ariane 5 rocket had its first launch.
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Maiden flight of Ariane 5

Back in June of 1996, the Ariane 5 rocket had its first launch.
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Maiden flight of Ariane 5

40 seconds later...
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Maiden flight of Ariane 5

The rocket self destruct due to a software error: an unsafe conversion
from 64-bit float to a 16-bit integer was not caught and led to uncon-
trollable behavior.

This error cost US$370 million.
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Null pointers

A null pointer is a pointer that does not point to anything.
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Null pointers

A null pointer is a pointer that does not point to anything.

“You either have to check every reference, or you risk disaster.”
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Null pointers

A null pointer is a pointer that does not point to anything.

“You either have to check every reference, or you risk disaster.”

“I call it my billion-dollar mistake. It was the invention of the null refer-
ence in 1965. [...] This has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion dollars of pain and
damage in the last forty years.”

- Tony Hoare
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Static program analysis

@ Software bugs can incur great costs.
@ Programs can be too complicated for humans to catch all bugs.

@ We need more formal, automated, methods to do this for us.
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Static program analysis

@ Software bugs can incur great costs.

@ Programs can be too complicated for humans to catch all bugs.

@ We need more formal, automated, methods to do this for us.

Static program analysis: the science of automatically finding bugs in
programs without running them.
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Uses of static program analysis

Static program analysis attempts to answer question like:
@ Does the program use a variable x before it is initialized?
@ Can the program have a null-pointer dereferencing?

@ If expression e is inside a loop, does e's value depend on the loop
iteration?
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Uses of static program analysis

Static program analysis attempts to answer question like:
@ Does the program use a variable x before it is initialized?
@ Can the program have a null-pointer dereferencing?

@ If expression e is inside a loop, does e's value depend on the loop
iteration?

Applications:
@ Optimizing compilers.
o IDEs.

o Verification of safety-critical systems.

> In 2003, Astrée was used to verify the flight control software of Airbus
A340.
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Overview

We will consider the IFDS framework, which captures a large class of use-
ful static analyses such as:

@ possibly-uninitialized variables, @ available expressions,
o null-pointer, @ live variables, and
@ reaching definitions, @ dead-code elimination.
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Overview

We will consider the IFDS framework, which captures a large class of use-
ful static analyses such as:

@ possibly-uninitialized variables, @ available expressions,

o null-pointer, @ live variables, and

@ reaching definitions, @ dead-code elimination.
Setting:

o Large scale. We have a large codebase (e.g., in Google/Meta) on
which we want to perform some IFDS analysis.

e On-demand. We receive a large stream of queries (e.g., from

developers) inquiring about the analysis result between two particular
statements in the codebase.
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Overview

We will consider the IFDS framework, which captures a large class of use-
ful static analyses such as:

@ possibly-uninitialized variables, @ available expressions,

o null-pointer, @ live variables, and

@ reaching definitions, @ dead-code elimination.
Setting:

o Large scale. We have a large codebase (e.g., in Google/Meta) on
which we want to perform some IFDS analysis.

e On-demand. We receive a large stream of queries (e.g., from
developers) inquiring about the analysis result between two particular
statements in the codebase.

Standard IFDS algorithms. Authors of IFDS (POPL'95 [1], FSE'95 [2])
gave algorithms to achieve this, but they do not scale to large codebases
with over 10° LoC.
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Overview

Idea: exploit sparsity of graphs appearing in the problem.

Graphs that arise in the problem often have nice structures that can en-
able faster algorithms.
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Overview

Idea: exploit sparsity of graphs appearing in the problem.

Graphs that arise in the problem often have nice structures that can en-
able faster algorithms.

Chatterjee (ESOP'20) [3] took this approach.
@ They exploited low treewidth of control-flow graphs.
@ Pro: fast preprocessing and query time.
@ Con: they solve a restricted case of the problem.
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Overview

Idea: exploit sparsity of graphs appearing in the problem.

Graphs that arise in the problem often have nice structures that can en-
able faster algorithms.

Chatterjee (ESOP'20) [3] took this approach.
@ They exploited low treewidth of control-flow graphs.
@ Pro: fast preprocessing and query time.
@ Con: they solve a restricted case of the problem.

This work: exploit low treedepth of call graphs to solve the general case.
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Contribution
o Identify a new sparsity parameter: treedepth of the program’s call
graph.
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Contribution
o Identify a new sparsity parameter: treedepth of the program’s call

graph.
@ Solve the general case of IFDS problems. We exploit this new
parameter to develop fast algorithm that extends that of Chatterjee's

and solves the general case of IFDS.
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Contribution
o Identify a new sparsity parameter: treedepth of the program’s call
graph.
@ Solve the general case of IFDS problems. We exploit this new
parameter to develop fast algorithm that extends that of Chatterjee's

and solves the general case of IFDS.
o Experimental results. We experimentally showed on real-world
programs that:
» Call graphs do have low treedepth.
» Our algorithm outperforms the standard algorithms of [1, 2].
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Contribution
o Identify a new sparsity parameter: treedepth of the program’s call
graph.
@ Solve the general case of IFDS problems. We exploit this new
parameter to develop fast algorithm that extends that of Chatterjee's

and solves the general case of IFDS.
o Experimental results. We experimentally showed on real-world
programs that:
» Call graphs do have low treedepth.
» Our algorithm outperforms the standard algorithms of [1, 2].

For a program of n lines:

Approach ‘ General? ‘ Preprocessing ‘ Query
Reps et. al. (POPL'95) v O (n)
Horwitz et. al. (FSE'95) v O (n)
Chatterjee et. al.
(ESOP'20) X O(n) o)
Our result v O (n) O (1)
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Abstractions for programs

We'll need 3 abstractions to formalize the structure of a program:
@ Control-flow graphs.
@ Supergraphs.
© Call graphs.
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Control flow graphs (CFGs)

A program P with a single function f is formalized by a control-flow graph
Gr = (Vr, Ef):
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Control flow graphs (CFGs)

A program P with a single function f is formalized by a control-flow graph

Gr = (Vr, Ef):

@ V¢ corresponds to
statements of P.

o (u1,w) € Ef
represents flow of
control from uy to
u».

@ Gr has a start
vertex sf and exit
vertex er.

® N O g A W N

int add(int a, int b) {

(-

int sum = a;

while (b > 0) {
sum = sum + 1;
b=5b - 1;

}

return sum;

Sadd

€add
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Control flow graphs (CFGs)

A program P with a single function f is formalized by a control-flow graph
Gr = (Vr, Ef):

@ V¢ corresponds to
statements of P.

Sadd

@ A path in Gf = an execution of P.

@ The paths in Gf completely characterize f's behavior

. €q
at runtime. dd

1 int add(int a, int b) { @
° (Ul,UQ) € Ef 2 int sum = a; @
represents flow of 3 while (b > 0) {
control from u; to * sum = sum + 1; (vs)
5 b=5b -1;
u». 6 3 @
@ Gy has a start 7 return sum;
vertex s; and exit ° ¥ @
vertex er.
Observe: @
()
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Control flow graphs (CFGs)

A program P with a single function f is formalized by a control-flow graph
Gr = (Vr, Ef):

@ V¢ corresponds to
statements of P.

o (u1,w) € Ef
represents flow of
control from uy to

Sadd
int add(int a, int b) {
int sum = a;
while (b > 0) {
sum = sum + 1;
b=5b - 1;
u». }

@ Gr has a start return sum;
vertex sf and exit

vertex er.

® N O g A W N

Analyzing P = compute the meet-over-all-paths (MOP).J

€add

(-
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Supergraphs
Program consisting of functions fi, ..., fx is formalized by a supergraph G
G = CFGs Gg,..., Gg, + interprocedural edges
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Supergraphs

Program consisting of functions fi, ..
G = CFGs Gy, ..
@ A function call from f to f' =

two vertices ¢ and r in f.

@ Intrerprocedural edges:
(c,sf) and (ef, r).

void g(int *&a,

b = a;

}

int main ()
int *a,

{
*xb;

int *&b) {

a = new int (42);

g(a, b);
*b = 0;

., G, + interprocedural edges

Smain

., f is formalized by a supergraph G
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Supergraphs

Program consisting of functions fi, ..

., f is formalized by a supergraph G

G = CFGs Gg,..., Gg, + interprocedural edges

@ A function call from f to f' =

two vertices ¢ and r in f.

@ Intrerprocedural edges:
(c,sf) and (ef, r).

void g(int *&a, int *&b) {
b = a;
}
int main() {
int *a, *b;
a = new int (42);
gla, b);
*b = 0;
}

e Smain

Question: a path in G = an execution of P? )
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Invalid paths

@ In a CFG, any path can be realized.

@ In a supergraph, need to be more careful..
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Invalid paths

@ In a CFG, any path can be realized.

@ In a supergraph, need to be more careful..

p void h() { f h 9
i (25) ()
T

j ()

s int £() { () )
h();

5 &)

8

9 int g() { @ @ @

10 h(Q;

" © ®
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Invalid paths

@ In a CFG, any path can be realized.

@ In a supergraph, need to be more careful..

1 void h() {
2

3}

4

5 int £() {
6 h();
7}

8

9 int g(O) {
10 h();
1 }
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Invalid paths

@ In a CFG, any path can be realized.

@ In a supergraph, need to be more careful..

void h() {

}

1
2

3

4

5 int £() {
6 h();
7}

8

9 int g() {
10 h();
1 }
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Invalid paths

@ In a CFG, any path can be realized.

@ In a supergraph, need to be more careful..

p void h() { f h 9
2
() ()
T
j ()
s int £() { () )
h();
) ©
8
9 int g() { @ @ @
10 h(Q;

0 © ®

@ An interprocedurally valid path (IVP) is a path where returns are to
the correct matching calls.

@ An IVP in G = an execution of P.
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Invalid paths

@ In a CFG, any path can be realized.

@ In a supergraph, need to be more careful..

1 void h() { f h g
2
(=) (=)
}
j ()
5 int £ A{ e @
hO;
5 >
8
9 int g() { @ @ @
10 h();
O © ®
Analyzing P = compute the meet-over-all-valid-paths (MIVP). J

39/147



Call graphs
A Call graph C = (F, Ec) has:
@ Vertices are functions of the program.

o (f,f") € Ec = there is a call from some line in f to f'.

1 void h() {%} f
2

3 void £() {

4 g0

5 h();

6 t

7

g void g() { v
9 h(Q); h
10 }
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Call graphs
A Call graph C = (F, Ec) has:
@ Vertices are functions of the program.

o (f,f") € Ec = there is a call from some line in f to f'.

1 void h() {%} f
2

3 void £() {

4 g0

5 h();

6 t

7

g void g() { v
9 h(Q); h
10 }

@ The call graph can be inferred from the supergraph.

@ Describes program’s behavior at the function level.
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IFDS problems

In an IFDS problem, the input is:

@ Supergraph G = (V,E).

@ Finite set of data-facts D.
Each edge e = (/, /) € E has a flow function M, : 20 — 2P,

o Meet operator M € {U,N}.

o M, distributes over M, i.e., Me(D1 M D2) = Me(D1) 1 Me(D).
To solve the IFDS problem: compute at each program point (vertex)
which data-facts hold.
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IFDS problems: example
Example: null-pointer analysis.
@ D = set of variables in the program.
@ A solution: for every | € V, compute S; C D, the set of variable that
may be null after / if we start execution from main.

void g(int *&a, int *&b) {
b = a;

}

int *a, *b;
a = new int (42);
gla, b);

1
2
3
4
5 int main() {
6
7
8
9 *b = 0;
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IFDS problems: example

Example: null-pointer analysis.

@ D = set of variables in the program.
@ A solution: for every | € V, compute S; C D, the set of variable that
may be null after / if we start execution from main.

void g(int *&a, int
b = a;

}

int *a, *b;
a = new int (42);
gla, b);

1
2
3
4
5 int main() {
6
7
8
9 *b = 0;

*&b) {

e @
Svp,:{a7b} @
Sg
Sv-,:{b} @ —”__ @ SU ={b}
S,, = {b} O
8 OFr

€

G :
.

G
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IFDS problems: formalizing a solution
More formally:

@ Forapathm=e1-e---¢e in G, define:
My = Mg, 0 Mg, 00 M,,. smm
@ For uy,ur € V, define: @

IVP(ul,U2) = @ Bl @

{P | Pisan IVP from u; to up in G}. @

e For uy,up € V and D; C D, we want to @ ~~~~~~

compute: @
€g

MIVP(uy, Dy, u2) := |_| Mx(D1) (v16) €main

TEIVP(uy,up)

o We'll assume wlog that M = U.
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IFDS problems

IFDS problem
Input: (G = (V,E),D,{Mc}ece) queries of the form (uy, D1, u2).

Output: for each query (ui, D1, up), return:

MIVP(Ul, Dy, Uz).
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IFDS problems

IFDS problem
Input: (G =(V,E),D,{Mec}cce) queries of the form (ui, D1, up).

Output: for each query (ui, D1, up), return:

MIVP(Ul, Dr, Ug).

Objective: develop an algorithm that has:
o Lightweight preprocessing phase after which,

@ Queries can be answered as fast as possible.
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IFDS problems

IFDS problem
Input: (G =(V,E),D,{Mec}cce) queries of the form (ui, D1, up).

Output: for each query (ui, D1, up), return:

MIVP(Ul, Dr, Ug).

Objective: develop an algorithm that has:

o Lightweight preprocessing phase after which,
@ Queries can be answered as fast as possible.

In the remainder of this talk, we will give a series of observations, each of
which give us a simpler problem to solve.
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Where we are

Computing
meet-over-all-valid-paths
in the supergraph
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Where we are

But first, let's introduce sparsity parameters..
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Treewidth

Treewidth measures “tree-likeness” of a graph.
Graphs of small treewidth are tree-like.
Graph problems are typically easier on trees.

Similarly, graph problems are also typically easier on graphs of low
treewidth.
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Treewidth

Tree Decompositions (TDs)

Given G = (V/,E), a tree decomposition of G is a tree T = (B, ET):
@ Every node b € B of the tree T has a corresponding bag V;, C V.
Q Upen Vo =V.

Q@ Vu,veV {uv}ecE = FbeB {u v}V,

Q Vv eV, {bec B|ve V,} forms a connected subtree of T.
The width of T is maxpess |Vip| — 1.

{2,6,8}

[12.5,8}] [{2.3,6}]

[{5,7,8}] [{1,2,3}] [{3,4,6}]
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Treewidth

Tree Decompositions (TDs)

Given G = (V/,E), a tree decomposition of G is a tree T = (B, ET):
@ Every node b € B of the tree T has a corresponding bag V;, C V.
© Upes Vo =V.

Q@ Vu,veV {uvieE = 3FbeB {u,v}CV,.

Q Vv eV, {bec B|ve V,} forms a connected subtree of T.
The width of T is maxpess |Vip| — 1.

[{5,7,8}] [{1,2,3}] [{3,4,6}]
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Treewidth

Tree Decompositions (TDs)

Given G = (V/,E), a tree decomposition of G is a tree T = (B, ET):
@ Every node b € B of the tree T has a corresponding bag V;, C V.
Q@ Upen Vo =V.

Q@ Vu,veV {uv}ecE = FbeB {u v}V,

Q Vv eV, {bec B|ve V,} forms a connected subtree of T.
The width of T is maxpess |Vip| — 1.

{2,6,8}

[12.5,8}] [{2.3,6}]

[{5,7,8}] [{1,2,3}] [{3,4,6}]
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Treewidth

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree T = (B, E7):
@ Every node b € B of the tree T has a corresponding bag V;, C V.
©Q Upes Vo= V.

Q@ Vu,veV {uv}ecE = FbeB {u v}V,

Q Vv eV, {bec B|ve V,} forms a connected subtree of T.
The width of T is maxpess |Vip| — 1.

{2,6,8}

(12.5,81] [{2.3.6}]

{5,7,8}| |{1,2,3}
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Treewidth

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree T = (B, E7):
@ Every node b € B of the tree T has a corresponding bag V;, C V.
©Q Upes Vo= V.

Q@ Vu,veV {uv}ecE = FbeB {u v}V,

Q Vv eV, {bec B|ve V,} forms a connected subtree of T.
The width of T is maxpess |Vip| — 1.

(57,8} |{1.2,31] [{3.4.6}]

57 /147




Treewidth

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree T = (B, E7):
@ Every node b € B of the tree T has a corresponding bag V;, C V.
©Q Upes Vo= V.

Q@ Vu,veV {uvieE = 3FbeB {u,v}CV,.

Q Vv eV, {becB|ve V,} forms a connected subtree of T.
The width of T is maxpes |Vp| — 1.
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Treewidth

Tree Decompositions (TDs)

Given G = (V, E), a tree decomposition of G is a tree T = (B, E7):
© Every node b € B of the tree T has a corresponding bag V;, C V.
©Q Upes Vo= V.

Q@ Vu,veV {uvieE = 3FbeB {u,v}CV,.

Q Vv eV, {becB|ve V,} forms a connected subtree of T.
The width of T is maxpes |Vp| — 1.
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Treewidth

Tree Decompositions (TDs)

Given G = (V/,E), a tree decomposition of G is a tree T = (B, ET):
@ Every node b € B of the tree T has a corresponding bag V;, C V.
Q Upen Vo =V.

Q@ Vu,veV {uv}ecE = FbeB {u v}V,

Q Vv eV, {bec B|ve V,} forms a connected subtree of T.
The width of T is maxpess |Vip| — 1.

{2,6,8}

[12.5,8}] [{2.3,6}]

[{5,7,8}] [{1,2,3}] [{3,4,6}]
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Treewidth

Tree Decompositions (TDs)

Given G = (V/,E), a tree decomposition of G is a tree T = (B, ET):
@ Every node b € B of the tree T has a corresponding bag V;, C V.
2] Ube‘B Vb= V.

Q@ Vu,veV {uv}ecE = FbeB {u v}V,
Q Vv eV, {bec B|ve V,} forms a connected subtree of T.

The width of T is maxpess |Vip| — 1.

The treewidth of G is the smallest width among all TDs over G.
This TD has width 2 and is optimal = the graph has treewidth 2.

{2,6,8}

[12.5,8}] [{2.3,6}]

[{5,7,8}] [{1,2,3}] [{3,4,6}]
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Cut property of TDs

Cut property of TDs

Consider G = (V,E) and a TD T = (8, E7) of it. Pick any edge
e = {b,b'} € ET. Removing e will break T into two connected subtrees
TP and T?, containing b and b, respectively. We have that:

Vp N Vi separates U V. from U Ve.
ceTh ceT?

{27 67 8}

(12.5,8}] (12.3,6}]

| /

[{5,7,8}] [{1,2,3}] [{3,4,6}]
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Cut property of TDs

Cut property of TDs

Consider G = (V,E) and a TD T = (8, E7) of it. Pick any edge
e = {b,b'} € ET. Removing e will break T into two connected subtrees
TP and T?, containing b and b, respectively. We have that:

Vp N Vi separates U V. from U Ve.
ceTh ceT?

b [{2,6,8)

[{2,5,8}] [{2,3,6}] %

| /

[{5,7,8}] [{1,2,3}] [{3,4,6}]
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Cut property of TDs

Cut property of TDs

Consider G = (V,E) and a TD T = (B, Et) of it. Pick any edge
e = {b,b'} € ET. Removing e will break T into two connected subtrees
TP and T?, containing b and b, respectively. We have that:

Vp NV separates U V. from U Ve.
ceTh ceTt

Tb
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Cut property of TDs

Cut property of TDs

Consider G = (V,E) and a TD T = (B, Et) of it. Pick any edge
e = {b,b'} € ET. Removing e will break T into two connected subtrees
TP and T?, containing b and b, respectively. We have that:

Vp NV separates U V. from U Ve.
ceTh ceTt

Tb
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Treedepth

@ Treedepth measures how much a graph resembles a shallow tree.

@ Graphs of small treedepth have simpler structure.

66 /147



Treedepth

Partial Order Trees (POTs)

Given a graph G = (V, E), a partial order tree over G is a rooted tree
T = (V, ET) where

(u,v) € E = wu and v are in an ancestor-descendant relationship in T.
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Treedepth

Partial Order Trees (POTs)

Given a graph G = (V, E), a partial order tree over G is a rooted tree
T = (V, ET) where

(u,v) € E = wu and v are in an ancestor-descendant relationship in T.
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Treedepth

Partial Order Trees (POTs)

Given a graph G = (V, E), a partial order tree over G is a rooted tree
T = (V, ET) where

(u,v) € E = wu and v are in an ancestor-descendant relationship in T.
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Treedepth

Partial Order Trees (POTs)

Given a graph G = (V, E), a partial order tree over G is a rooted tree
T = (V, ET) where
(u,v) € E = wu and v are in an ancestor-descendant relationship in T.

The treedepth of G is the smallest depth among all POTs over G.
This POT has depth 3 and is optimal = the graph has treedepth 3.
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Cut property of POTs

Cut property of POTs
Consider G = (V,E) and a POT T = (V, E7) over it. For any u,v € V,
let A be the set of common ancestors of u and v in T. For any path p

from u to v in G, we have:
ANp#0

71/147



Cut property of POTs

Cut property of POTs
Consider G = (V,E) and a POT T = (V, E7) over it. For any u,v € V,
let A be the set of common ancestors of u and v in T. For any path p

from u to v in G, we have:
ANp#D
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Cut property of POTs

Cut property of POTs
Consider G = (V,E) and a POT T = (V, E7) over it. For any u,v € V,
let A be the set of common ancestors of u and v in T. For any path p

from u to v in G, we have:
ANp#D
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Cut property of POTs

Cut property of POTs
Consider G = (V,E) and a POT T = (V, E7) over it. For any u,v € V,
let A be the set of common ancestors of u and v in T. For any path p

from u to v in G, we have:
ANp#0D
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Cut property of POTs

Cut property of POTs
Consider G = (V,E) and a POT T = (V, E7) over it. For any u,v € V,
let A be the set of common ancestors of u and v in T. For any path p

from u to v in G, we have:
ANp#D
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Exploiting sparsity

Idea: exploit sparsity of graphs that arise the program.
In CFGs: each if/while-node has 2 outgoing edges, others have only 1.

In call graphs: we don't expect a function to call a lot of other functions.
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Exploiting sparsity

Idea: exploit sparsity of graphs that arise the program.
In CFGs: each if/while-node has 2 outgoing edges, others have only 1.

In call graphs: we don't expect a function to call a lot of other functions.

Magic formula

For any problem involving graphs:

input graphs are sparse A problem is simpler on sparse graphs

— faster algorithms
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Applying the formula
Applying the magic formula on CFGs:
@ CFGs have small treewidth, shown by Thorup (Inf. Comput.’98) [4].
o Chattarjee et al. (ESOP'20) used this to develop an algorithm with:
» Preprocessing in O(n - D3) time and O([lg%]) time per query.
» Can only answer same-context queries.
» Used by our algorithm as a black box.
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Applying the formula
Applying the magic formula on CFGs:
@ CFGs have small treewidth, shown by Thorup (Inf. Comput.’98) [4].
o Chattarjee et al. (ESOP'20) used this to develop an algorithm with:
» Preprocessing in O(n - D3) time and O([lg%]) time per query.
» Can only answer same-context queries.
» Used by our algorithm as a black box.

Applying the magic formula on call graphs:

o Call graphs have small treedepth.

o Experimentally: We analyzed program from DaCapo,
» Avg. # of functions = 803.1.
> Avg. treedepth = 43.8.
» Max. treedepth = 135.

@ Intuition: functions are developed in chronological order, each
function uses a small subset of previously-developed functions as a
library.

@ In general, we expect treedepth to scale very slowly with program

size.
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Extra input

Our algorithm uses both parameters, so we'll assume:

@ For every function f € F, we are given a TD T¢ of f's CFG Gy, and
T+ has small width tw.

@ We are given a POT T over the call graph C, and T has small depth
td.
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Extra input

Our algorithm uses both parameters, so we'll assume:

@ For every function f € F, we are given a TD T¢ of f's CFG Gy, and
T+ has small width tw.

@ We are given a POT T over the call graph C, and T has small depth
td.

We know that such T¢'s and T exist, but how to compute them?
@ This is NP-hard in general.

@ There are efficient algorithms that compute a TD/POT if its
width/depth is small [5, 6].

@ In our experiments, we use heuristic solvers.
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Where we are

Computing
meet-over-all-valid-paths
in the supergraph

[TDs over CFGs] [ POT over C ]
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Table of Contents

@ Solving IFDS problems
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IFDS problems

IFDS problem
Input: (G = (V,E),D,{Mc}ece) queries of the form (uy, D1, u2).

Output: for each query (u, D1, up), return:

MIVP(Ul, Dy, Uz).
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Simplification via distributivity

@ Flow functions are distributive:
Me({dl, ey dk}) = Me(@) U Me({dl}) J---u Me({dk})
— It suffices to know M () and M.({d}) for every d € D.
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Simplification via distributivity

@ Flow functions are distributive:
Me({dl, ey dk}) = Me(@) U Me({dl}) J---u Me({dk})
— It suffices to know M () and M.({d}) for every d € D.

e Can represent a function with a bipartite graph of sides D* := D U {0}:

0 a b 0 a b 0 a b 0 a b 0 a b
0 ab 0 a b 0 a b 0 ab 0 a b
Az.{a,b} Az.(x— {a})U{b} \z.x Az.zU{a} Az {{g}f i g
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Simplification via distributivity

@ Flow functions are distributive:
Me({dl, ey dk}) = Me(@) U Me({dl}) J---u Me({dk})
— It suffices to know M () and M.({d}) for every d € D.

e Can represent a function with a bipartite graph of sides D* := D U {0}:

0 a b 0 a b 0 a b 0 a b 0 a b
0 ab 0 a b 0 a b 0 ab 0 a b
Az.{a,b} Az.(x— {a})U{b} \z.x Az.zU{a} Az {{g}f i g

@ Compositions of functions = reachability of their representation:
0 a b

* 0 a b
Az.x U {a} l\ I 1\./
)\l‘{{a}r#w I I/ e o o )\J{a}
r= L] L] L] 0 a b
0 a b
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Exploded supergraphs
Replace each edge in a supergraph G = (V/, E) with their graph represen-

tation, which gives an exploded supergraph G = (V x D* E):
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Exploded supergraphs

Replace each edge in a supergraph G = (V
tation, which gives an exploded supergraph

0 \
I

Smain

€main

89

, E) with their graph represen-
G

= (V x D%, E):
" 0 d dy
Al
vr 0 d; d;

U1
C8

V2
T8

.
Vg 3

V10
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Exploded supergraphs
Replace each edge in a supergraph G = (V/, E) with their graph represen-
G

tation, which gives an exploded supergraph G = (V x D* E):
0 dy dy
Smain Vs
v II

e @ 7 0 d; dy

-7 vy
Cg

V2
T8
3

€g Vg

€main V10

0 \

I Y
\
Y

Q((u1, d1), (u2, do)) := 1 iff there is an IVP from (u1, d1) to (up,d) in G.
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Exploded supergraphs: example

void g(int
b = a;

}

int main ()
int *a,
a = new
gla, b);
*b = 0;

}

@ d> = “b may be null”
@ Q((v5,0),(cs,d2)) =1 = Db may be null after line 7.
e Q((v5,0),(rs,d2)) =0 = b is not null after returning from call to g.

*&a, int *&b)

{
*b;
int (42) ;

Us

Vg

U7

Cg

T8

Vg

V10

0 d; do

|

0 di dy

U1

V2

U3
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IFDS problems

Simpler problem: checking existence of an IVP in G.

IFDS problem #2

Input: (G) and queries of the form ((u1, d1), (u2, d2)).

Output: for each query ((u1, di), (u2, d2)), return:

Q((u1, di), (u2, d2)).
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Where we are

Computing Checking existence of
meet-over-all-valid-paths interprocedurally valid paths
in the supergraph in the exploded supergraph

[TDs over CFGs] [ POT over C ]
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Same-context paths

A same-context path (SCP) in G/G is a special IVP that keeps the call-
stack intact.
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Same-context paths

A same-context path (SCP) in G/G is a special IVP that keeps the call-
stack intact.

0 d; do 0 d; do
. I I . I I
Ve Ve
vr 0 d; dy vr 0 d dy
V1 U1
Cg Cg
V2 v2
T8 T8
v v
Vg 3 Vg 3
V10 V10
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Same-context paths
A same-context path (SCP) in G/G is a special IVP that keeps the call-
stack intact.

0 d; do 0 d; do
. I I . I I
Ve Ve
vr 0 d; dy vr 0 d dy
U1 U1
Cg Cg
V2 v2
T8 T8
v v
Vg 3 Vg 3
V10 V10

scQ((u1, d1), (u2, d2)) := 1 iff there is an SCP from (u1,d1) to (u2, d2) in G.
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Canonical partition

Idea: consider an IVP 7 in G, there are two types of call nodes in 7
@ Temporary calls: calls ¢ with a corresponding return node r later in 7.

@ Persistent calls: no corresponding return.
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Canonical partition

Idea: consider an IVP 7 in G, there are two types of call nodes in 7
@ Temporary calls: calls ¢ with a corresponding return node r later in 7.

@ Persistent calls: no corresponding return.

Canonical partition

7 can always be written as:
T=Y1-C-X2-C  Tg-Ck* Liq1

Where ¢y, ..., cx are the persistent calls in .
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Canonical partition

= (X1 -a) (Z2-c) - (Tk- o) i1 J

Assumption: suppose 7 begins and ends at some start-node.
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Canonical partition

r=(Z1-ca) (T2 ) (Tk- k) Tkt J
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Canonical partition

r=(Z1-ca) (T2 ) (Tk- k) Tkt )

Observation #1: each ¥; - ¢; is a same-context path.

55

Ql
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Canonical partition

r=(Z1-ca) (T2 ) (Tk- k) Tkt )

Observatlon #2: c, calls f,+1 = (f,, f,+1) is an edge of the caII graph

Ql
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Canonical partition

r=(Z1-ca) (T2 ) (Tk- k) Tkt J

[ X ] [ ] e - \.‘O.
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Canonical partition

r=(Z1-ca) (T2 ) (Tk- k) Tkt J

e o've oo™ ... T Teve
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Canonical partition

r=(Z1-ca) (T2 ) (Tk- k) Tkt J

[ X ] [ ] oe®  ----- \.‘O.
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Canonical partition

r=(Z1-ca) (T2 ) (Tk- k) Tkt )

EX|stence of = eX|stence of a path from (f,- ) to (fus1,- ) in C

Ql

[ X ] [ ] oe®  ----- \.‘..
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Exploded call graphs
For a call graph C = (F, Ec), an exploded call graph C = (F x D*, Ec)
has ((fi, d1), (f2, d2)) € Ec iff there is a (c, d3) € V x D* s.t.

® 5CQ((s4, 1), (c, d3)) o (c,d3) calls (s5,, do).
0 d ds

Al

vt 0 d; ds

Cs

v2

V3 0

T8

Vg

V10
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Exploded call graphs

For a call graph C = (F, Ec), an exploded call graph C = (F x D*, Ec)

has ((fi, d1), (f2, d2)) € Ec iff there is a (c, d3) € V x D* s.t.

e 3CQ((sf, d1),(c,d3)) o (c,ds3) calls (s, d2).

0 dy dy
Vs

e fe e o

V10
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Exploded call graphs
For a call graph C = (F, Ec), an exploded call graph C = (F x D*, Ec)

has ((fi, d1), (f2, d2)) € Ec iff there is a (c, d3) € V x D* s.t.

® 5CQ((s4, 1), (c, d3)) o (c,d3) calls (s5,, do).
0 d ds

Vs

Cs

T8

0 fh 0 ;1 ds

Vg

V10

v<(Sfu7 dl)? (sfv7 d2)>, Q((Sfu7 dl)? (wa d2)) = (fw dl) el (fV7 d2)' J
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Exploded call graph

We now have two subproblems to answer queries of the form

<(Sfu7 dl)? (wa d2)>7

@ Computing the exploded call graph C.

@ Answering reachability queries on C.
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Where we are

Computing Checking existence of
meet-over-all-valid-paths interprocedurally valid paths
in the supergraph in the exploded supergraph

[TDs over CFGs] [ POT over C ]

Computing Checking reachability in
the exploded call graph the exploded call graph
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Computing C
Recall, ((f1, d1), (f2, d»)) € Ec iff there is a (c,d3) € Vs x D* s.t
o 5CQ((sf, d1), (¢, d3)) o (c, ds) calls (sg,, do).
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Computing C

Recall, ((f1, d1), (f2, d»)) € Ec iff there is a (c,d3) € Vs x D* s.t

, (¢, d3)) o (c,ds) calls (sg,, da).

~— o~

e SCQ((sf, di

We already have an algorithm of Chatterjee to answer SCQ((sf, d1), (¢, d3)).
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Computing C

Recall, ((f1, d1), (f2, d»)) € Ec iff there is a (c,d3) € Vs x D* s.t

, (¢, d3)) o (c,ds) calls (sg,, da).

~— o~

e SCQ((sf, di

We already have an algorithm of Chatterjee to answer SCQ((sf, d1), (¢, d3)).
We'll use it as a black box.
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Computing C

Recall, ((f1, d1), (f2, d»)) € Ec iff there is a (c,d3) € Vs x D* s.t

~— o~

@ SCQ((sf, d1), (c,d3)) o (c,ds) calls (sg,, da).

We already have an algorithm of Chatterjee to answer SCQ((sf, d1), (¢, d3)).

(fl’dl)

(f27 d2)

Algorithm:
@ lterate over all possible ((f1, d1), (¢, d3)).

@ Invoke Chatterjee’s algorithm to compute SCQ((sy, d1), (¢, d3)).
@ If it returns 1, add the corresponding ((f1, d1), (f2, d2)) to

C.
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Where we are

Computing Checking existence of
meet-over-all-valid-paths interprocedurally valid paths
in the supergraph in the exploded supergraph

[TDs over CFGs] [ POT over C ]

Computing Checking reachability in
the exploded call graph the exploded call graph

SC algorithm

Proc: O(n- D?%)
Query : O([D/lgn])
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Checking reachability in C

Reachability on C

Input: (C) and queries of the form ((7,, d1), (f,, d2)).

Output: for each query ((fy, d1), (f,, d2)), return:

(fua dl) T (fV7 d2)
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Checking reachability in C

We have a POT T over C : explode it into a POT T over C.

(£,0)

(f,d1)
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Checking reachability in C

We have a POT T over C : explode it into a POT T over C.

(£,0)

(f,d1)

T has depth td == T has depth td - D, which is still small.
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Exploiting treedepth

Reachability on C using POT T
Input: (C, T) and queries of the form ((f,, d1), (f,, d2)).

Output: for each query ((fy, d1), (f,, d2)), return:

(fua dl) T (fV7 d2)
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Reachability on C using POT T

Let fﬁ be the set of descendants of uin T.
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Reachability on C using POT T

For every u and every descendant v of it, define:

! there is a path from v to u in f[ft]
uplu,v] == - :
0 otherwise
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Reachability on C using POT T

For every u and every descendant v of it, define:

downlu, v] := 1 there is a path from u to v in ?[Ft
o 0 otherwise :

dO’wn[u, UZ] =1
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Reachability on C using POT T: preprocessing

Preprocessing: compute up and down.
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Reachability on C using POT T: preprocessing

Preprocessing: compute up and down.

— downlu, ] is computed by a DFS from u, ignoring edges leaving C[F .
— up[u, -] is similarly computed by reversing edges of C.
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Reachability on C using POT T: preprocessing

Preprocessing: compute up and down.

— downl[u, -] is computed by a DFS from u, ignoring edges leaving E[Ft].
— up[u, -] is similarly computed by reversing edges of C.

Each edge is traversed O(depth of T) = O(td - D) times.
= up and down can be computed in O(n- D3 - td) time.
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Reachability on C using POT T: queries

For any u, v in C, let A be the set of their common ancestors in T.
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Reachability on C using POT T: queries
By the cut property of POTs, any path p from u to v in C has:

pNAZD
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Reachability on C using POT T: queries
Let w € A be the highest node in p N A.
We must have:

up[w, u] = 1 A down[w, v] = 1.

uplw,u] =1 down[w,v] =1

_____
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Reachability on C using POT T: queries

u~eviff 3w € Ast. uplw,u] =1 A down[w,v] = 1. |

To answer a query (u, v): we iterate over w and check if
up[w, u] = 1 A down[w, v] =1
= query time O(depth of T) = O(td - D).

uplw,u] =1 down[w,v] =1

_____
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Where we are

Computing Checking existence of
meet-over-all-valid-paths interprocedurally valid paths
in the supergraph in the exploded supergraph

[TDs over CFGs] [ POT over C ]

Computing Checking reachability in
the exploded call graph the exploded call graph

SC algorithm Reachability using POT
Proc: O(n- D?%) Proc: O(n- D3 td)
Query : O([D/lgn]) Query : O(td- D)
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Answering a general query on G
C helps us compute Q((sr,, d1), (s,, d2)), which is a restricted form.
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Answering a general query on G
C helps us compute Q((sr,, d1), (s,, d2)), which is a restricted form.

fi f2
(uladl) (f/7d4) (f27d5) = (sf2’d5)

To compute Q((u1, d1), (u2, d2)) :
o lterate over calls (c, d3) in the same function as u;.
o If (¢, d3) calls (sfr, ds), perform:
» Same-context query: check SCQ((u1, d1), (¢, d3)).
» Reachability query on C: check (f’, ds) ~»¢ (f2, d5), and
» Same-context query: check SCQ((sg, ds), (u2, d2)).

133 /147



Answering a general query on G

Done!

134 /147



Runtime

@ Preprocessing: O(n- D3 - td).
o Query: O(D3-td).
where:
@ n =# lines in the program
@ D number of possible data facts.

o td = treedepth of the call graph.
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Runtime

@ Preprocessing: O(n- D3 -td). «+ O(n) in practice.
o Query: O(D3-td). + O(1) in practice.
where:
@ n =# lines in the program
@ D number of possible data facts.

o td = treedepth of the call graph.
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Table of Contents

© Experimental results
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Experiments: setup

@ Ran the algorithm on real-world programs from DaCapo benchmarks.

@ Extracted the CFGs and call graph using Soot.

o Used PACE solvers [7, 8] to compute:

» TDs of the CFGs of small width.
» POT over the call graph of small depth.

@ On each benchmark we ran reachability, null-pointer, and
possibly-uninitialized variables analyses.

@ For a program of n lines, we generate n random queries.

@ Ran each analysis on:

» (PARAM) our algorithm,
» (IFDS) standard IFDS algorithm [1], and
» (DEM) its demand version [2].

timing out at 10 minutes.
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Experiments: results

Average/maximum are over 13 programs from DaCapo benchmarks.

o |V| (= lines of code):
> Average: 22.7K.

@ Number of functions:
> Average: 803.1.

@ Treewidth of CFGs:
> Average: 9.1.

o Treedepth of call graphs:
> Average: 43.8.

Maximum:

Maximum:

Maximum:

Maximum:

58.5K.

2028.

10.

135.
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Experiments: reachability
Preprocessing:

o Average: 0.93s. o Maximum: 1.53s.
Query:
o Average: 0.11ms. @ Maximum: 0.53ms.

IFDS's query:
o Average: 12.3ms. e Maximum: 33.80ms.

IFDS/PARAM: 390.55.
Reachability

—
» 0.035
-

= PARAM
A IFDS s

Q@ 0.030

5 0.025

S0.020 A a
(]

>
c_0.015

@ o0.010
o A
E 0.005 A

(]

<>(o.ooo Met s = == n aE = E
[ 20000 40000 60000 80000 100000 120000 140000
Instance size
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Experiments: reachability analysis
Preprocessing:

o Average: 0.93s. o Maximum: 1.53s.
Query:

o Average: 0.11ms. @ Maximum: 0.53ms.
DEM's query:

o Average: 26.36ms. e Maximum: 70.91ms.

DEM/PARAM: 848.13.
Reachability

n PARAM .
£°° « DEM o

[
o002 . o

° [ ]
000 w8 mm m m n EE =N
[ 20000 40000 60000 80000 100000 120000 140000

Instance size
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Experiments: null-pointer analysis

Preprocessing:

o Average: 41.80s.
Query:

o Average: 5.84ms.
IFDS's query:

o Average: 299.91ms.
IFDS/PARAM: 202.92.

@ Maximum: 140.85s.

o Maximum: 27.63ms.

@ Maximum: 932.04ms.

o
@

4
o

o
S

o
N

o
o

Null-pointer
= PARAM B A
A IFDS
i"" ; :l am n - m n

Average query time (s)

0 250000 500000 750000 1000000 1250000 1500000 1750000

Instance size
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Experiments: null-pointer analysis

Preprocessing:

o Average: 41.80s.
Query:

o Average: 5.84ms.
DEM's query:

o Average: 75.58ms.
DEM/PARAM: 56.86.

@ Maximum: 140.85s.

o Maximum: 27.63ms.

@ Maximum: 221.58ms.

- Null-pointer

n .
@ 0.20 = PARAM

g o DEM °

s °

> °

—

]

3 0.10

(e

g .

Soos .

b= [ ] e

(]>) [ 4 i EE mg [ ] [ I | [ ]
z 0.00

0 250000 500000 750000 1000000 1250000 1500000 1750000

Instance size
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Experiments: possibly-uninitialized variables analysis
Preprocessing:

o Average: 89.44s. o Maximum: 265.31.
Query:
@ Average: 10.39ms. @ Maximum: 43.70ms.

IFDS's query:
o Average: 543.53ms. @ Maximum: 2221.90ms.

IFDS/PARAM: 143.96
Uninitialized variables

0 Y
20 = PARAM

£ A IFDS

;1.5

| A
(]

gl.o A N

(]

D5 A

o A A

v A

3: oo A m = mm " = =

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
Instance size
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Experiments: possibly-uninitialized variables analysis
Preprocessing:

o Average: 89.44s. o Maximum: 265.31.
Query:

@ Average: 10.39ms. @ Maximum: 43.70ms.
DEM's query:

o Average: 97.54ms. o Maximum: 255.86ms

DEM/PARAM: 27.25.

Uninitialized variables

@ozs e
o = PARAM
L]
£ 020 o DEM . ¢
=
)
Cloas
]
>
To.10 %
[J] [ ]
0’005
§ | T.e
[]
> 000 B ™ L] [T n -
Z o

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
Instance size
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Conclusion

@ Identify and exploit a new sparsity parameter: treedepth of call graphs.

@ Fast parameterized algorithm for general on-demand IFDS.

@ Theoretical improvement over previous works.

@ Experimentally outperforming the standard IFDS algorithms by two

orders of magnitude.

Approach ‘ General? ‘ Preprocessing ‘ Query
Reps et. al. (POPL'95) v O (n-D3)
Horwitz et. al. (FSE'95) v O (n- D?)
Chatterjee et. al. (ESOP'20) X O (n-D3) O([D/lgn])
Our result v O(n-D3-td) | O(D? td)
Publications

— A.K. Goharshady, A.K. Zaher, “Efficient Interprocedural Data-Flow

Analysis using Treedepth and Treewidth,” in VMCAI'23.
— G.K. Conrado, A.K. Goharshady, K. Kochekov, Y.C. Tsai,

A.K. Zaher,

“Exploiting the Sparseness of Control-flow and Call Graphs for Efficient
and On-demand Algebraic Program Analysis,” in OOPSLA'23.
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