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Maiden flight of Ariane 5

Back in June of 1996, the Ariane 5 rocket had its first launch.

4 / 147



Maiden flight of Ariane 5

Back in June of 1996, the Ariane 5 rocket had its first launch.

5 / 147



Maiden flight of Ariane 5

40 seconds later...
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Maiden flight of Ariane 5

The rocket self destruct due to a software error: an unsafe conversion
from 64-bit float to a 16-bit integer was not caught and led to uncon-
trollable behavior.

This error cost US$370 million.
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Null pointers

A null pointer is a pointer that does not point to anything.

“You either have to check every reference, or you risk disaster.”

“I call it my billion-dollar mistake. It was the invention of the null refer-
ence in 1965. [...] This has led to innumerable errors, vulnerabilities, and
system crashes, which have probably caused a billion dollars of pain and
damage in the last forty years.”

- Tony Hoare
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Static program analysis

Software bugs can incur great costs.

Programs can be too complicated for humans to catch all bugs.

We need more formal, automated, methods to do this for us.

Static program analysis: the science of automatically finding bugs in
programs without running them.
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Uses of static program analysis

Static program analysis attempts to answer question like:

Does the program use a variable x before it is initialized?

Can the program have a null-pointer dereferencing?

If expression e is inside a loop, does e’s value depend on the loop
iteration?

Applications:

Optimizing compilers.

IDEs.

Verification of safety-critical systems.
▶ In 2003, Astrée was used to verify the flight control software of Airbus

A340.
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Overview

We will consider the IFDS framework, which captures a large class of use-
ful static analyses such as:

possibly-uninitialized variables,

null-pointer,

reaching definitions,

available expressions,

live variables, and

dead-code elimination.

Setting:

Large scale. We have a large codebase (e.g., in Google/Meta) on
which we want to perform some IFDS analysis.

On-demand. We receive a large stream of queries (e.g., from
developers) inquiring about the analysis result between two particular
statements in the codebase.

Standard IFDS algorithms. Authors of IFDS (POPL’95 [1], FSE’95 [2])
gave algorithms to achieve this, but they do not scale to large codebases
with over 105 LoC.
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Overview

Idea: exploit sparsity of graphs appearing in the problem.

Graphs that arise in the problem often have nice structures that can en-
able faster algorithms.

Chatterjee (ESOP’20) [3] took this approach.

They exploited low treewidth of control-flow graphs.

Pro: fast preprocessing and query time.

Con: they solve a restricted case of the problem.

This work: exploit low treedepth of call graphs to solve the general case.
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Contribution
Identify a new sparsity parameter: treedepth of the program’s call
graph.

Solve the general case of IFDS problems. We exploit this new
parameter to develop fast algorithm that extends that of Chatterjee’s
and solves the general case of IFDS.
Experimental results. We experimentally showed on real-world
programs that:

▶ Call graphs do have low treedepth.
▶ Our algorithm outperforms the standard algorithms of [1, 2].

For a program of n lines:

Approach General? Preprocessing Query

Reps et. al. (POPL’95) ✓ O (n)

Horwitz et. al. (FSE’95) ✓ O (n)

Chatterjee et. al.
(ESOP’20)

✗ O (n) O (1)

Our result ✓ O (n) O (1)
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Abstractions for programs

We’ll need 3 abstractions to formalize the structure of a program:

1 Control-flow graphs.

2 Supergraphs.

3 Call graphs.
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Control flow graphs (CFGs)

A program P with a single function f is formalized by a control-flow graph
Gf = (Vf ,Ef ):

Vf corresponds to
statements of P.

(u1, u2) ∈ Ef

represents flow of
control from u1 to
u2.

Gf has a start
vertex sf and exit
vertex ef .

1 int add(int a, int b) {

2 int sum = a;

3 while (b > 0) {

4 sum = sum + 1;

5 b = b - 1;

6 }

7 return sum;

8 }
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Control flow graphs (CFGs)

A program P with a single function f is formalized by a control-flow graph
Gf = (Vf ,Ef ):

Vf corresponds to
statements of P.

(u1, u2) ∈ Ef

represents flow of
control from u1 to
u2.

Gf has a start
vertex sf and exit
vertex ef .

1 int add(int a, int b) {

2 int sum = a;

3 while (b > 0) {

4 sum = sum + 1;

5 b = b - 1;

6 }

7 return sum;

8 }

Observe:

A path in Gf ≡ an execution of P.

The paths in Gf completely characterize f ’s behavior
at runtime.
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Control flow graphs (CFGs)

A program P with a single function f is formalized by a control-flow graph
Gf = (Vf ,Ef ):

Vf corresponds to
statements of P.

(u1, u2) ∈ Ef

represents flow of
control from u1 to
u2.

Gf has a start
vertex sf and exit
vertex ef .

1 int add(int a, int b) {

2 int sum = a;

3 while (b > 0) {

4 sum = sum + 1;

5 b = b - 1;

6 }

7 return sum;

8 }

Analyzing P ≡ compute the meet-over-all-paths (MOP).
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Supergraphs
Program consisting of functions f1, . . . , fk is formalized by a supergraph G

G ≡ CFGs Gf1 , . . . ,Gfk + interprocedural edges

A function call from f to f ′ ≡
two vertices c and r in f .

Intrerprocedural edges:
(c , sf ′) and (ef ′ , r).

1 void g(int *&a, int *&b) {

2 b = a;

3 }

4

5 int main() {

6 int *a, *b;

7 a = new int (42);

8 g(a, b);

9 *b = 0;

10 }

call-to
-start

exit-to-return-site

exit-to-return-site

call-to
-start

Question: a path in G ≡ an execution of P?
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Invalid paths

In a CFG, any path can be realized.

In a supergraph, need to be more careful..

1 void h() {

2 ...

3 }

4

5 int f() {

6 h();

7 }

8

9 int g() {

10 h();

11 }
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Invalid paths

In a CFG, any path can be realized.

In a supergraph, need to be more careful..

1 void h() {

2 ...

3 }

4

5 int f() {

6 h();

7 }

8

9 int g() {

10 h();

11 }

An interprocedurally valid path (IVP) is a path where returns are to
the correct matching calls.

An IVP in G ≡ an execution of P.
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Invalid paths

In a CFG, any path can be realized.

In a supergraph, need to be more careful..

1 void h() {

2 ...

3 }

4

5 int f() {

6 h();

7 }

8

9 int g() {

10 h();

11 }

Analyzing P ≡ compute the meet-over-all-valid-paths (MIVP).
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Call graphs

A Call graph C = (F ,EC ) has:

Vertices are functions of the program.

(f , f ′) ∈ EC ≡ there is a call from some line in f to f ′.

1 void h() {}

2

3 void f() {

4 g();

5 h();

6 }

7

8 void g() {

9 h();

10 }

The call graph can be inferred from the supergraph.

Describes program’s behavior at the function level.
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IFDS problems

In an IFDS problem, the input is:

Supergraph G = (V ,E ).

Finite set of data-facts D.

Each edge e = (l , l ′) ∈ E has a flow function Me : 2D → 2D .

Meet operator ⊓ ∈ {∪,∩}.
Me distributes over ⊓, i.e., Me(D1 ⊓ D2) = Me(D1) ⊓Me(D2).

To solve the IFDS problem: compute at each program point (vertex)
which data-facts hold.
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IFDS problems: example
Example: null-pointer analysis.

D = set of variables in the program.

A solution: for every l ∈ V , compute Sl ⊆ D, the set of variable that
may be null after l if we start execution from main.

1 void g(int *&a, int *&b) {

2 b = a;

3 }

4

5 int main() {

6 int *a, *b;

7 a = new int (42);

8 g(a, b);

9 *b = 0;

10 }
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IFDS problems: formalizing a solution

More formally:

For a path π = e1 · e2 · · · ek in G , define:

Mπ = Mek ◦Mek ◦ · · · ◦Me1 .

For u1, u2 ∈ V , define:

IVP(u1,u2) =

{P | P is an IVP from u1 to u2 in G}.

For u1, u2 ∈ V and D1 ⊆ D, we want to
compute:

MIVP(u1,D1, u2) :=
l

π∈IVP(u1,u2)

Mπ(D1)

We’ll assume wlog that ⊓ = ∪.
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IFDS problems

IFDS problem

Input: ⟨G = (V ,E ),D, {Me}e∈E ⟩ queries of the form ⟨u1,D1, u2⟩.

Output: for each query ⟨u1,D1, u2⟩, return:

MIVP(u1,D1, u2).

Objective: develop an algorithm that has:

Lightweight preprocessing phase after which,

Queries can be answered as fast as possible.

In the remainder of this talk, we will give a series of observations, each of
which give us a simpler problem to solve.
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Where we are

TDs over CFGs POT over C

Checking existence of
interprocedurally valid paths
in the exploded supergraph

Computing
meet-over-all-valid-paths

in the supergraph

Checking existence of
same-context valid paths

Checking reachability in
the exploded call graph
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Where we are

But first, let’s introduce sparsity parameters..
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Treewidth

Treewidth measures “tree-likeness” of a graph.

Graphs of small treewidth are tree-like.

Graph problems are typically easier on trees.

Similarly, graph problems are also typically easier on graphs of low
treewidth.

The treewidth of G is the smallest width among all TDs over G .
This TD has width 2 and is optimal =⇒ the graph has treewidth 2.
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Treewidth

Tree Decompositions (TDs)

Given G = (V ,E ), a tree decomposition of G is a tree T = (B,ET ):
1 Every node b ∈ B of the tree T has a corresponding bag Vb ⊆ V .
2

⋃
b∈B Vb = V .

3 ∀u, v ∈ V , {u, v} ∈ E =⇒ ∃b ∈ B {u, v} ⊆ Vb.
4 ∀v ∈ V , {b ∈ B|v ∈ Vb} forms a connected subtree of T .

The width of T is maxb∈B |Vb| − 1.

The treewidth of G is the smallest width among all TDs over G .
This TD has width 2 and is optimal =⇒ the graph has treewidth 2.
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Cut property of TDs

Cut property of TDs

Consider G = (V ,E ) and a TD T = (B,ET ) of it. Pick any edge
e = {b, b′} ∈ ET . Removing e will break T into two connected subtrees
T b and T b′ , containing b and b′, respectively. We have that:

Vb ∩ Vb′ separates
⋃

c∈T b

Vc from
⋃

c∈T b′

Vc .
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Treedepth

Treedepth measures how much a graph resembles a shallow tree.

Graphs of small treedepth have simpler structure.

The treedepth of G is the smallest depth among all POTs over G .
This POT has depth 3 and is optimal =⇒ the graph has treedepth 3.
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Treedepth

Partial Order Trees (POTs)

Given a graph G = (V ,E ), a partial order tree over G is a rooted tree
T = (V ,ET ) where

(u, v) ∈ E =⇒ u and v are in an ancestor-descendant relationship in T .

The treedepth of G is the smallest depth among all POTs over G .
This POT has depth 3 and is optimal =⇒ the graph has treedepth 3.
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Cut property of POTs

Cut property of POTs

Consider G = (V ,E ) and a POT T = (V ,ET ) over it. For any u, v ∈ V ,
let A be the set of common ancestors of u and v in T . For any path ρ
from u to v in G , we have:

A ∩ ρ ̸= ∅
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Exploiting sparsity

Idea: exploit sparsity of graphs that arise the program.

In CFGs: each if/while-node has 2 outgoing edges, others have only 1.

In call graphs: we don’t expect a function to call a lot of other functions.

Magic formula

For any problem involving graphs:

input graphs are sparse ∧ problem is simpler on sparse graphs

=⇒ faster algorithms
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Applying the formula
Applying the magic formula on CFGs:

CFGs have small treewidth, shown by Thorup (Inf. Comput.’98) [4].

Chattarjee et al. (ESOP’20) used this to develop an algorithm with:
▶ Preprocessing in O(n · D3) time and O(⌈ D

lg n⌉) time per query.
▶ Can only answer same-context queries.
▶ Used by our algorithm as a black box.

Applying the magic formula on call graphs:

Call graphs have small treedepth.

Experimentally: We analyzed program from DaCapo,
▶ Avg. # of functions = 803.1.
▶ Avg. treedepth = 43.8.
▶ Max. treedepth = 135.

Intuition: functions are developed in chronological order, each
function uses a small subset of previously-developed functions as a
library.

In general, we expect treedepth to scale very slowly with program
size.
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Extra input

Our algorithm uses both parameters, so we’ll assume:

For every function f ∈ F , we are given a TD Tf of f ’s CFG Gf , and
Tf has small width tw.

We are given a POT T over the call graph C , and T has small depth
td.

We know that such Tf ’s and T exist, but how to compute them?

This is NP-hard in general.

There are efficient algorithms that compute a TD/POT if its
width/depth is small [5, 6].

In our experiments, we use heuristic solvers.
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Where we are

TDs over CFGs POT over C

Checking existence of
interprocedurally valid paths
in the exploded supergraph

Computing
meet-over-all-valid-paths

in the supergraph

Checking existence of
same-context valid paths

Checking reachability in
the exploded call graph
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IFDS problems

IFDS problem

Input: ⟨G = (V ,E ),D, {Me}e∈E ⟩ queries of the form ⟨u1,D1, u2⟩.

Output: for each query ⟨u1,D1, u2⟩, return:

MIVP(u1,D1, u2).
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Simplification via distributivity

Flow functions are distributive:
Me({d1, . . . , dk}) = Me(∅) ∪Me({d1}) ∪ · · · ∪Me({dk})
=⇒ It suffices to know Me(∅) and Me({d}) for every d ∈ D.

Can represent a function with a bipartite graph of sides D∗ := D ∪ {0}:

Optimal and Parallel On-demand Data-flow Analysis 9

Remark 1. We note two points about the IFDS framework:
– As in [49], we only consider IFDS instances in which the meet operator

is union. Instances with intersection can be reduced to union instances by
dualization [49].

– For brevity, we are considering a global domain D, while in many applica-
tions the domain is procedure-specific. This does not affect the generality of
our approach and our algorithms remain correct for the general case where
each procedure has its own dedicated domain. Indeed, our implementation
supports the general case.

Succinct representations. A distributive function f : 2D → 2D can be succinctly
represented by a relation Rf ⊆ (D ∪ {0})× (D ∪ {0}) defined as:

Rf := {(0,0)}
∪ {(0, b) | b ∈ f(∅)}
∪ {(a, b) | b ∈ f({a})− f(∅)}.

Given that f is distributive over union, we have f({d1, . . . , dk}) = f({d1})∪· · ·∪
f({dk}). Hence, to specify f it is sufficient to specify f(∅) and f({d}) for each
d ∈ D. This is exactly what Rf does. In short, we have: f(∅) = {b ∈ D | (0, b) ∈
Rf} and f({d}) = f(∅)∪{b ∈ D | (d, b) ∈ Rf}. Moreover, we can represent the
relation Rf as a bipartite graph Hf in which each part consists of the vertices
D ∪ {0} and Rf is the set of edges. For brevity, we define D∗ := D ∪ {0}.

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

0 a b

λx.{a, b} λx.(x− {a}) ∪ {b} λx.x λx.x ∪ {a} λx.

{
{a}x 6= ∅
∅ x = ∅

Fig. 3: Succinct representation of several distributive functions.

Example 3. Let D = {a, b}. Figure 3 provides several examples of bipartite
graphs representing distributive functions.

Bounded Bandwidth Assumption. Following [49], we assume that the bandwidth
in function calls and returns is bounded by a constant. In other words, there is
a small constant b, such that for every edge e that is a call-to-start or exit-to-
return-site edge, every vertex in the graph representation HM(e) has degree b or
less. This is a classical assumption in IFDS [49,7] and models the fact that every
parameter in a called function is only dependent on a few variables in the callee

Compositions of functions ≡ reachability of their representation:

10 K. Chatterjee, A.K. Goharshady, R. Ibsen-Jensen, and A. Pavlogiannis

(and conversely, every returned value is only dependent on a few variables in the
called function).

Composition of distributive functions. Let f and g be distributive functions and
Rf and Rg their succinct representations. It is easy to verify that g ◦ f is also
distributive, hence it has a succinct representation Rg◦f . Moreover, we have
Rg◦f = Rf ;Rg = {(a, b) | ∃c (a, c) ∈ Rf ∧ (c, b) ∈ Rg}.

0 a b

0 a b

0 a b

0 a b

λx.{a}
λx.x ∪ {a}

λx.

{
{a}x 6= ∅
∅ x = ∅

Fig. 4: Obtaining Hg◦f (right) from Hf and Hg (left)

Example 4. In terms of graphs, to compute Hg◦f , we first take Hf and Hg, then
contract corresponding vertices in the lower part of Hf and the upper part of
Hg, and finally compute reachability from the topmost part to the bottommost
part of the resulting graph. Consider f(x) = x ∪ {a}, g(x) = {a} for x 6= ∅
and g(∅) = ∅, then g ◦ f(x) = {a} for all x ⊆ D. Figure 4 shows contracting
of corresponding vertices in Hf and Hg (left) and using reachability to obtain
Hg◦f (right).

Exploded supergraph. Given an IFDS instance I = (G,D,F,M,∪) with super-
graph G = (V,E), its exploded supergraph G is obtained by taking |D∗| copies of
each vertex in V , one corresponding to each element of D∗, and replacing each
edge e with the graph representation HM(e) of the flow function M(e). Formally,

G = (V ,E) where V = V ×D∗ and

E =
{

((u, d1), (v, d2)) | e = (u, v) ∈ E ∧ (d1, d2) ∈ RM(e)

}
.

A path P in G is (same-context) valid, if the path P in G, obtained by ignoring
the second component of every vertex in P , is (same-context) valid. As shown
in [49], for a data flow fact d ∈ D and a vertex v ∈ V, we have d ∈ MVPv iff
there is a valid path in G from (smain, d

′) to (v, d) for some d′ ∈ D ∪ {0}. Hence,
the IFDS problem is reduced to reachability by valid paths in G. Similarly, the
same-context IFDS problem is reduced to reachability by same-context valid
paths in G.

Example 5. Consider a null pointer analysis on the program in Figure 2. At each
program point, we want to know which pointers can potentially be null. We first
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graph G = (V,E), its exploded supergraph G is obtained by taking |D∗| copies of
each vertex in V , one corresponding to each element of D∗, and replacing each
edge e with the graph representation HM(e) of the flow function M(e). Formally,
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E =
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.

A path P in G is (same-context) valid, if the path P in G, obtained by ignoring
the second component of every vertex in P , is (same-context) valid. As shown
in [49], for a data flow fact d ∈ D and a vertex v ∈ V, we have d ∈ MVPv iff
there is a valid path in G from (smain, d

′) to (v, d) for some d′ ∈ D ∪ {0}. Hence,
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paths in G.
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Exploded supergraphs
Replace each edge in a supergraph G = (V ,E ) with their graph represen-
tation, which gives an exploded supergraph G =

(
V × D∗,E

)
:

Q((u1, d1), (u2, d2)) := 1 iff there is an IVP from (u1, d1) to (u2, d2) in G .
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Exploded supergraphs: example

d2 = “b may be null”

Q((v5, 0), (c8, d2)) = 1 =⇒ b may be null after line 7.

Q((v5, 0), (r8, d2)) = 0 =⇒ b is not null after returning from call to g.

1 void g(int *&a, int *&b) {

2 b = a;

3 }

4

5 int main() {

6 int *a, *b;

7 a = new int (42);

8 g(a, b);

9 *b = 0;

10 }
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IFDS problems

Simpler problem: checking existence of an IVP in G .

IFDS problem #2

Input: ⟨G ⟩ and queries of the form ⟨(u1, d1), (u2, d2)⟩.

Output: for each query ⟨(u1, d1), (u2, d2)⟩, return:

Q((u1, d1), (u2, d2)).
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Where we are

TDs over CFGs POT over C

Checking existence of
interprocedurally valid paths
in the exploded supergraph

Computing
meet-over-all-valid-paths

in the supergraph

Checking existence of
same-context valid paths

Checking reachability in
the exploded call graph
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Same-context paths
A same-context path (SCP) in G/G is a special IVP that keeps the call-
stack intact.

SCQ((u1, d1), (u2, d2)) := 1 iff there is an SCP from (u1, d1) to (u2, d2) in G .
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Canonical partition

Idea: consider an IVP π in G , there are two types of call nodes in π:

Temporary calls: calls c with a corresponding return node r later in π.

Persistent calls: no corresponding return.

Canonical partition

π can always be written as:
π = Σ1 · c1 · Σ2 · c2 · · ·Σk · ck · Σk+1

Where c1, . . . , ck are the persistent calls in π.
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Canonical partition

π = (Σ1 · c1) · (Σ2 · c2) · · · (Σk · ck) · Σk+1

Assumption: suppose π begins and ends at some start-node.
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Canonical partition

π = (Σ1 · c1) · (Σ2 · c2) · · · (Σk · ck) · Σk+1

Observation #1: each Σi · ci is a same-context path.
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Canonical partition

π = (Σ1 · c1) · (Σ2 · c2) · · · (Σk · ck) · Σk+1

Observation #2: ci calls fi+1 =⇒ (fi , fi+1) is an edge of the call graph.
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Canonical partition

π = (Σ1 · c1) · (Σ2 · c2) · · · (Σk · ck) · Σk+1

Exploded call graph C : each edge abstracts a segment Σi · ci · sfi+1
.
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Canonical partition

π = (Σ1 · c1) · (Σ2 · c2) · · · (Σk · ck) · Σk+1

Existence of π =⇒ existence of a path from (f1, ·) to (fk+1, ·) in C
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Exploded call graphs
For a call graph C = (F ,EC ), an exploded call graph C = (F × D∗,EC )
has ((f1, d1), (f2, d2)) ∈ EC iff there is a (c , d3) ∈ Vf × D∗ s.t.

SCQ((sf1 , d1), (c, d3)) (c , d3) calls (sf2 , d2).

∀⟨(sfu , d1), (sfv , d2)⟩, Q((sfu , d1), (sfv , d2)) = (fu, d1)⇝C (fv , d2).
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Exploded call graph

We now have two subproblems to answer queries of the form

⟨(sfu , d1), (sfv , d2)⟩,

1 Computing the exploded call graph C .

2 Answering reachability queries on C .
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Where we are

TDs over CFGs POT over C

Checking existence of
interprocedurally valid paths
in the exploded supergraph

Computing
meet-over-all-valid-paths

in the supergraph

Computing
the exploded call graph

Checking reachability in
the exploded call graph
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Computing C
Recall, ((f1, d1), (f2, d2)) ∈ EC iff there is a (c , d3) ∈ Vf × D∗ s.t

SCQ((sf1 , d1), (c, d3)) (c , d3) calls (sf2 , d2).

We already have an algorithm of Chatterjee to answer SCQ((sf1 , d1), (c , d3)).
We’ll use it as a black box.

Algorithm:
1 Iterate over all possible ((f1, d1), (c , d3)).
2 Invoke Chatterjee’s algorithm to compute SCQ((sf1 , d1), (c, d3)).
3 If it returns 1, add the corresponding ((f1, d1), (f2, d2)) to C .
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Where we are

TDs over CFGs POT over C

Checking existence of
interprocedurally valid paths
in the exploded supergraph

Computing
meet-over-all-valid-paths

in the supergraph

Computing
the exploded call graph
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Checking reachability in C

Reachability on C

Input: ⟨C ⟩ and queries of the form ⟨(fu, d1), (fv , d2)⟩.

Output: for each query ⟨(fu, d1), (fv , d2)⟩, return:

(fu, d1)⇝C (fv , d2).
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Checking reachability in C

We have a POT T over C : explode it into a POT T over C .

T has depth td =⇒ T has depth td · D, which is still small.
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Exploiting treedepth

Reachability on C using POT T

Input: ⟨C ,T ⟩ and queries of the form ⟨(fu, d1), (fv , d2)⟩.

Output: for each query ⟨(fu, d1), (fv , d2)⟩, return:

(fu, d1)⇝C (fv , d2).
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Reachability on C using POT T

Let F
↓
u be the set of descendants of u in T .
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Reachability on C using POT T

For every u and every descendant v of it, define:

up[u, v ] :=

{
1 there is a path from v to u in C [F

↓
u]

0 otherwise
.
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Reachability on C using POT T

For every u and every descendant v of it, define:

down[u, v ] :=

{
1 there is a path from u to v in C [F

↓
u]

0 otherwise
.
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Reachability on C using POT T : preprocessing

Preprocessing: compute up and down.

— down[u, ·] is computed by a DFS from u, ignoring edges leaving C [F
↓
u].

— up[u, ·] is similarly computed by reversing edges of C .

Each edge is traversed O(depth of T ) = O(td · D) times.
=⇒ up and down can be computed in O(n · D3 · td) time.
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Reachability on C using POT T : queries
For any u, v in C , let A be the set of their common ancestors in T .
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Reachability on C using POT T : queries
By the cut property of POTs, any path ρ from u to v in C has:

ρ ∩ A ̸= ∅

.
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Reachability on C using POT T : queries
Let w ∈ A be the highest node in ρ ∩ A.
We must have:

up[w , u] = 1 ∧ down[w , v ] = 1.
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Reachability on C using POT T : queries

u ⇝C v iff ∃w ∈ A s.t. up[w , u] = 1 ∧ down[w , v ] = 1.

To answer a query ⟨u, v⟩: we iterate over w and check if

up[w , u] = 1 ∧ down[w , v ] = 1

=⇒ query time O(depth of T ) = O(td · D).
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Where we are

TDs over CFGs POT over C

Checking existence of
interprocedurally valid paths
in the exploded supergraph

Computing
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Computing
the exploded call graph

Checking reachability in
the exploded call graph
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Answering a general query on G
C helps us compute Q((sfu , d1), (sfv , d2)), which is a restricted form.

To compute Q((u1, d1), (u2, d2)) :

Iterate over calls (c , d3) in the same function as u1.

If (c , d3) calls (sf ′ , d4), perform:
▶ Same-context query: check SCQ((u1, d1), (c , d3)).
▶ Reachability query on C: check (f ′, d4)⇝C (f2, d5), and
▶ Same-context query: check SCQ((sf2 , d5), (u2, d2)).
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Answering a general query on G

Done!
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Runtime

Preprocessing: O(n · D3 · td).

← O(n) in practice.

Query: O(D3 · td).

← O(1) in practice.

where:

n =# lines in the program

D number of possible data facts.

td = treedepth of the call graph.
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Experiments: setup

Ran the algorithm on real-world programs from DaCapo benchmarks.

Extracted the CFGs and call graph using Soot.

Used PACE solvers [7, 8] to compute:
▶ TDs of the CFGs of small width.
▶ POT over the call graph of small depth.

On each benchmark we ran reachability, null-pointer, and
possibly-uninitialized variables analyses.

For a program of n lines, we generate n random queries.

Ran each analysis on:
▶ (PARAM) our algorithm,
▶ (IFDS) standard IFDS algorithm [1], and
▶ (DEM) its demand version [2].

timing out at 10 minutes.
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Experiments: results

Average/maximum are over 13 programs from DaCapo benchmarks.

|V | (≈ lines of code):
▶ Average: 22.7K. ▶ Maximum: 58.5K.

Number of functions:
▶ Average: 803.1. ▶ Maximum: 2028.

Treewidth of CFGs:
▶ Average: 9.1. ▶ Maximum: 10.

Treedepth of call graphs:
▶ Average: 43.8. ▶ Maximum: 135.
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Experiments: reachability
Preprocessing:

Average: 0.93s. Maximum: 1.53s.

Query:

Average: 0.11ms. Maximum: 0.53ms.

IFDS’s query:

Average: 12.3ms. Maximum: 33.80ms.

IFDS/PARAM: 390.55.
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DEM’s query:

Average: 26.36ms. Maximum: 70.91ms.

DEM/PARAM: 848.13.
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Experiments: null-pointer analysis
Preprocessing:

Average: 41.80s. Maximum: 140.85s.

Query:

Average: 5.84ms. Maximum: 27.63ms.

IFDS’s query:

Average: 299.91ms. Maximum: 932.04ms.

IFDS/PARAM: 202.92.
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Experiments: null-pointer analysis
Preprocessing:

Average: 41.80s. Maximum: 140.85s.

Query:

Average: 5.84ms. Maximum: 27.63ms.

DEM’s query:

Average: 75.58ms. Maximum: 221.58ms.

DEM/PARAM: 56.86.
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Experiments: possibly-uninitialized variables analysis
Preprocessing:

Average: 89.44s. Maximum: 265.31.

Query:

Average: 10.39ms. Maximum: 43.70ms.

IFDS’s query:

Average: 543.53ms. Maximum: 2221.90ms.

IFDS/PARAM: 143.96
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Experiments: possibly-uninitialized variables analysis
Preprocessing:

Average: 89.44s. Maximum: 265.31.

Query:

Average: 10.39ms. Maximum: 43.70ms.

DEM’s query:

Average: 97.54ms. Maximum: 255.86ms

DEM/PARAM: 27.25.
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Conclusion
Identify and exploit a new sparsity parameter: treedepth of call graphs.
Fast parameterized algorithm for general on-demand IFDS.
Theoretical improvement over previous works.
Experimentally outperforming the standard IFDS algorithms by two

orders of magnitude.

Approach General? Preprocessing Query

Reps et. al. (POPL’95) ✓ O
(
n · D3

)

Horwitz et. al. (FSE’95) ✓ O
(
n · D3

)

Chatterjee et. al. (ESOP’20) ✗ O
(
n · D3

)
O (⌈D/ lg n⌉)

Our result ✓ O
(
n · D3 · td

)
O
(
D3 · td

)
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