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Applications: numerical invariant generation, predicate abstraction.
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Algorithm #2: exploits treewidth.
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Treewidth of CFGs

Treewidth:

o (Informally) a parameter that measures “tree-likeness” of a graph.

@ Small-treewidth graphs admit a tree decomposition with small bags.

@ Such decomposition enable us to successively break a graph into smaller
disconnected graphs separated by small cuts.

o CFGs have constant treewidth (Thorup '98).

8,9,10| 2,56 ] 1,2 |
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— a tree decomposition T of G with small bags.

Online input: a series of queries (i, j), each is a pair of program points.
Output: for each query (i, /), compute [p; ;] where (p; ;) = Pathsg(i,J).

Naive: n? possible queries, precompute all of them.
—> takes too much time and space.

Better: precompute only ‘“special queries” having a certain form s.t.,
o Expressiveness: a general query can be expressed with special queries.
@ Space: the number of special queries should be < n?.

o Time: total runtime should be small.
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Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G.

5,6,11
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Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G.
Lemma

For any u, v in G, there there are bags by, b, in T where every bag b on
Pb,.b, separates u from v in G.

A way to break the query!
For any bag b € Pbu,bvv |[pu,v]] = @Wevbl[/)U,W]] & |IpW,V]]
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Intra-procedural algorithm #2 via tree decomposition

Idea:

@ Always choose b to be the least common ancestor bag of b,, b, in T.

Picking Vp = {2,3,6},
[p11,10] = ([p11,2] ® [p2,10]) ® ([p12,3] ® [p3,10]) © ([r11,6] © [p6,10])
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e Find b, and b,.

o Let byca := LCA(by, by), the least common ancestor in T.

@ return

[pu] = @ [ouw] @ [ow,v]-

weEbj ca

Number of “special queries” = O(n - height of the TD).
Problem: if tree decomposition is too long = O(n?) special queries.
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Intra-procedural algorithm #2 via tree 4+ centroid decomp.

Solution: build a centroid decomposition T' of the tree decomposition T,
which has height O(log n).

@ Apply previous slide with b, ca being LCA in T/ not T.
Number of “special queries” = O(n - log n).
We precompute all special queries in O(n-logn - k).
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Inter-procedural algorithm

— We extend our algorithm by exploiting sparsity of the call graph.
— Capture the sparsity using treedepth.

See the paper for details.
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Experiments

1. IFDS dataflow analyses (reachability, uninitialized variables, null-ptr):

@ Each algebra element is the graph representation of IFDS.

@ Used programs from DaCapo benchmarks.

Comparison of our algorithms vs. running Tarjan's algo. at every query:

Dead-code elimination Uninitialized variables Null-pointer
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Experiments

2. Analysis of boolean programs:
@ Each algebra element is a state transformer represented by a BDD.

@ Used boolean programs generated from applying Predicate
Abstraction on Windows drivers.

Comparison of our algorithms vs. running Tarjan's algo. at every query:

Predicate abstraction
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<
.
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10t i’

40000 60000 80000 100000 120000

Benchmark size
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Conclusion

Fast algorithms for on-demand algebraic program analysis.

e Exploiting sparseness of CFGs (via treewidth) to handle the
intra-procedural queries.

e Exploiting sparseness of CGs (via treedepth) to extend the solution to
the inter-procedural case.

@ Experiments showing efficiency in comparison with using Tarjan’s
algorithm.
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— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, /), compute [[p; ;] where (p; ;) = Pathsg(i, ).

— The paper presents two algorithms:
Algorithm #1:
@ Operates directly on the structure of CFG.
@ Assumes programs have constant nesting depth.
@ Preprocessing: O(n-loglogn - k); query O(k).
Algorithm #2:
@ Operates on the “tree decomposition” of the CFG.
@ Assumes CFGs have constant treewidth: more robust assumption.
@ Preprocessing: O(n-logn - k); query O(k).
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Preprocessing:
@ Structurally recursive: before processing P, process its subprograms first.

@ For each sub-program, precompute queries only at the top-level.
@ Build a sqrt-tree data structure to efficiently answer same-level queries.

To answer a query (/,j), a path i ~ j either:
@ Visits some node at the top-level,
— can be answered with the sqrt-tree.
@ Or it doesn't
— reduces to a query in a subprogram with smaller depth.
@ Answers for different paths are combined with @& and ®
o Efficiency relies on having a small nesting depth.
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Call graph (CG): C = ({f1,...,fm}, Ec), (fi,f}) € Ec <= {f; calls f;}.

Treedepth:

(Informally) measures for a graph how similar it is to a shallow tree.

Small-treedepth graphs admit a depth decomposition with small depth.

Similar to treewidth, such decomposition enable us to successively divide
a graph into smaller components separated by small cuts.

@ We assume CGs have small treedepth w.r.t. program size; justified

experimentally.
@ We exploit this assumption to efficiently solve the inter-procedural case.

0‘0’9 (D

6‘6‘0 ®

3/4



Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a augmented graph G = (V, E) (union of CFGs + call edges),

— an algebra (A, ®,®,®,0,1), a semantic function [] : E A

— for each function f;, a value [f;] summarizing f;’s execution.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, j), compute [[p; ;] where (p; ;) = Pathsz(i, ).
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Output: for each query (i, j), compute [[p; ;] where (p; ;) = Pathsz(i, ).

Function summaries are given — no return edges — same as the intra-

procedural case, but on a larger graph with different structure.

Preprocessing:

@ Run the intra-procedural algorithm for each function.

@ For each CG edge (f;, f;), compute a value [(f;, f;)] summarizing all all
paths lying in f; with only last vertex in f;.

Break a query into: intra-procedural queries, and call-graph queries.

Answering call-graph queries: find depth decomp. — convert to tree de-

comp — apply treewidth-based algorithm. Done!
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