Exploiting the Sparseness of Control-flow and Call
Graphs for Efficient and On-demand Algebraic
Program Analysis

Giovanna K. Conrado, Amir K. Goharshady, Kerim Kochekov,
Yun Chen Tsai, and Ahmed K. Zaher

October 26th, 2023

B FEHUKRAESR
T THE HONG KONG
le) UNIVERSITY OF SCIENCE
AND TECHNOLOGY

1/17



Agenda

@ Context and contribution

© Algorithms

© Experiments and conclusion

2/17



Agenda

@ Context and contribution

3/17



Algebraic program analysis

1 int main O {

2 int x = 50, y = 0;
3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;

6 y=y*2;

7 }

n}

4/17



Algebraic program analysis

1 int main O {

2 int x = 50, y = 0;
3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y=y*2;

7 }

n}

4/17



Algebraic program analysis

1 int main O {

2 int x = 50, y = 0; Universe of summaries A
3 while (x-- >= 0) {

4 if (x & 1) 1.

5 y += 3; H'E_)fl_

6 y=y* 2; (A,€9,®7®70a1)

7

{Xij}ijeqi.. n}

n}

4/17



Algebraic program analysis

1 int main O {

2 int x = 50, y = 0; Universe of summaries A
3 while (x-- >= 0) {

4 if (x & 1) 1.

5 y += 3; H'E_)fl_

6 y=y* 2; (A,@,@,@,O,l)

7

{Xij}ijeqi.. n}

n}
Algebraic approach to find X; ;:

4/17



Algebraic program analysis

1 int main O {

2 int x = 50, y = 0; Universe of summaries A
3 while (x-- >= 0) {

4 if (x & 1) 1.

5 y += 3; H'E_)fl_

6 y=y* 2; (A,@,@,@,O,].)

7

{Xij}ijeqi.. n}

n}
Algebraic approach to find X; ;:
@ Find a regular expression p; j over E recognizing exactly Paths(i,j) :

p2,7=ez‘<e3-(e6+e4~e5)'e7)*‘es.

4/17



Algebraic program analysis

1 int main O {

2 int x = 50, y = 0; Universe of summaries A
3 while (x-- >= 0) {

4 if (x & 1) 1.

5 y += 3; H'E_)fl_

6 y=y* 2; (A,@,@,@,O,].)

7

{Xij}ijeqi.. n}

n}
Algebraic approach to find X; ;:
@ Find a regular expression p; j over E recognizing exactly Paths(i,j) :

p27 =€ <e3- (e + e - es) 'e7) - es.
@ To obtain X;;, interpret p; ; using the algebra:

Xo1 = [zl = [ @ ([ @ ([l @ [ed] @ [es]) @ [erd) [l

4/17



Algebraic program analysis

1 int main O {

2 int x = 50, y = 0; Universe of summaries A
3 while (x-- >= 0) {

4 if (x & 1) 1.

5 y += 3; H'E_)fl_

6 y=y* 2; (A,@,@,@,O,].)

7

{Xij}ijeqi.. n}

n}
Algebraic approach to find X; ;:
@ Find a regular expression p; j over E recognizing exactly Paths(i,j) :
p27 =€ <e3- (e + e - es) 'e7) - es.
@ To obtain X;;, interpret p; ; using the algebra:

Xo1 = [zl = [ @ ([ @ ([l @ [ed] @ [es]) @ [erd) [l

Applications: numerical invariant generation, predicate abstraction.

4/17



On-demand Algebraic program analysis

1 int main O {

2 int x = 50, y = 0; Universe of summaries A
3 while (x-- >= 0) {

4 if (x & 1) 1.

5 y += 3; H'E_)fl_

6 y=y* 2; (A,€9,®7®70a1)

7

{Xij}ijeqi.. n}

n}

On-demand: a large stream of online queries (i, j) asking for X; ;.

4/17



On-demand Algebraic program analysis

1 int main O {

2 int x = 50, y = 0; Universe of summaries A
3 while (x-- >= 0) {

4 if (x & 1) 1.

5 y += 3; H'E_)fl_

6 y=y* 2; (A,€9,®7®70a1)

7

{Xij}ijeqi.. n}

n}
On-demand: a large stream of online queries (i, j) asking for X; ;.

Goal: answer these queries fast. J

4/17



On-demand Algebraic program analysis

1 int main O {

2 int x = 50, y = 0; Universe of summaries A
3 while (x-- >= 0) {

4 if (x & 1) 1.

5 y += 3; H'E_)fl_

6 y=y* 2; (A,€9,®7®70a1)

7

{Xij}ijeqi.. n}

n}
On-demand: a large stream of online queries (i, j) asking for X; ;.

Goal: answer these queries fast. J

Why?

4/17



Formulation and contribution

On-demand algebraic program analysis

5/17



Formulation and contribution

On-demand algebraic program analysis
Offline input: (can be preprocessed)

— a program P,

— an algebra (A, ®, ®,®,0,1),

— a semantic function [-] : E — A.

5/17




Formulation and contribution

On-demand algebraic program analysis
Offline input: (can be preprocessed)

— a program P,

— an algebra (A, ®, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.

5/17




Formulation and contribution

On-demand algebraic program analysis
Offline input: (can be preprocessed)

— a program P,

— an algebra (A, &, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (/, /), compute [p; ;] where (p; ;) = Pathsp(i,;).

5/17




Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)

— a program P,

— an algebra (A, &, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (/, /), compute [p; ;] where (p; ;) = Pathsp(i,;).

Exploiting the Sparseness of Control-flow and Call Graphs for
Efficient and On-demand Algebraic Program Analysis

5/17




Formulation and contribution

On-demand algebraic program analysis
Offline input: (can be preprocessed)

— a program P,

— an algebra (A, &, ®,®,0,1),
— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (/, /), compute [p; ;] where (p; ;) = Pathsp(i,;).

Our contribution: algorithms to solve this efficiently.

5/17




Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
— a program P,

— an algebra (A, ®,®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (/, /), compute [p; ;] where (p; ;) = Pathsp(i,;).

Our contribution: algorithms to solve this efficiently.

— Preprocessing: precompute queries of special forms.

— Query: express input queries as combination of precomputed queries.
— Light preprocessing and fast query time.

5/17



Formulation and contribution

On-demand algebraic program analysis
Offline input: (can be preprocessed)

— a program P,

— an algebra (A, ®,®,®,0,1),
— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (/, /), compute [p; ;] where (p; ;) = Pathsp(i,;).

Our contribution: algorithms to solve this efficiently.

— Preprocessing: precompute queries of special forms.

— Query: express input queries as combination of precomputed queries.
— Light preprocessing and fast query time.

Intra-procedural case: we exploit sparsity of control-flow graphs.

5/17




Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)

— a program P,

— an algebra (A, ®,®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (/, /), compute [p; ;] where (p; ;) = Pathsp(i,;).

Our contribution: algorithms to solve this efficiently.

— Preprocessing: precompute queries of special forms.

— Query: express input queries as combination of precomputed queries.
— Light preprocessing and fast query time.

Intra-procedural case: we exploit sparsity of control-flow graphs.
Inter-procedural case:

@ We assume function summaries are computed and are given in input.
o We additionally exploit sparsity of call graphs.

5/17




Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)

— a program P,

— an algebra (A, &, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (/, /), compute [p; ;] where (p; ;) = Pathsp(i,;).

Exploiting the Sparseness of Control-flow and Call Graphs for
Efficient and On-demand Algebraic Program Analysis

5/17




Agenda

© Algorithms

6/17



Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a CFG G = (V,E) of a single function,
— an algebra (A, &, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, /), compute [p; ;] where (p; ;) = Pathsg(i, ).

7/17




Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a CFG G = (V,E) of a single function,

— an algebra (A, ®,®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (i, /), compute [p; ;] where (p; ;) = Pathsg(i, ).

- n=|V| =~ |E|, cost per algebra operation is k:
— Tarjan's algorithm:
@ Works on reducible flow graphs (=~ CFGs).
o Answers all queries (i, —) for a fixed i in O(na(n) - k).
@ Doesn't suit our on-demand setting:
— for n queries with different i's, naive repetition = (n?) time.

7/17



Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a CFG G = (V,E) of a single function,
— an algebra (A, &, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (i, /), compute [p; ;] where (p; ;) = Pathsg(i, ).

— The paper presents two algorithms:

7/17




Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a CFG G = (V,E) of a single function,

— an algebra (A, &, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (i, /), compute [p; ;] where (p; ;) = Pathsg(i, ).

— The paper presents two algorithms:
Algorithm #1: exploits nesting depth. See the paper.

7/17



Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a CFG G = (V,E) of a single function,

— an algebra (A, &, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (i, /), compute [p; ;] where (p; ;) = Pathsg(i, ).

— The paper presents two algorithms:
Algorithm #1: exploits nesting depth. See the paper.

Algorithm #2: exploits treewidth.

7/17



Treewidth of CFGs

Treewidth:
o (Informally) a parameter that measures “tree-likeness” of a graph.

8/17



Treewidth of CFGs

Treewidth:

o (Informally) a parameter that measures “tree-likeness” of a graph.

@ Small-treewidth graphs admit a tree decomposition with small bags.

@ Such decomposition enable us to successively break a graph into smaller
disconnected graphs separated by small cuts.

8,9,10| 2,56 ] 1,2 |

8/17



Treewidth of CFGs

Treewidth:

o (Informally) a parameter that measures “tree-likeness” of a graph.

@ Small-treewidth graphs admit a tree decomposition with small bags.

@ Such decomposition enable us to successively break a graph into smaller
disconnected graphs separated by small cuts.

o CFGs have constant treewidth (Thorup '98).

8,9,10| 2,56 ] 1,2 |

8/17



Intra-procedural algorithm #2

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

a CFG G = (V, E) of a single function,

an algebra (A, ®,®,®,0,1),

— a semantic function [-] : E — A,

— a tree decomposition T of G with small bags.

Online input: a series of queries (i, j), each is a pair of program points.
Output: for each query (i, /), compute [p; ;] where (p; ;) = Pathsg(i,J).

9/17




Intra-procedural algorithm #2

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

a CFG G = (V, E) of a single function,

an algebra (A, ®,®,®,0,1),

— a semantic function [-] : E — A,

— a tree decomposition T of G with small bags.

Online input: a series of queries (i, j), each is a pair of program points.
Output: for each query (i, /), compute [p; ;] where (p; ;) = Pathsg(i,J).

Naive: n? possible queries, precompute all of them.
—> takes too much time and space.

9/17




Intra-procedural algorithm #2

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

a CFG G = (V, E) of a single function,

an algebra (A, ®,®,®,0,1),

— a semantic function [-] : E — A,

— a tree decomposition T of G with small bags.

Online input: a series of queries (i, j), each is a pair of program points.
Output: for each query (i, /), compute [p; ;] where (p; ;) = Pathsg(i,J).

Naive: n? possible queries, precompute all of them.
—> takes too much time and space.

Better: precompute only ‘“special queries” having a certain form s.t.,
o Expressiveness: a general query can be expressed with special queries.
@ Space: the number of special queries should be < n?.

o Time: total runtime should be small.

9/17




Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G.

5,6,11

10/17



Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G.
Lemma

For any u, v in G, there there are bags by, b, in T where every bag b on
Pb,.b, separates u from v in G.

10/17



Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G.
Lemma

For any u, v in G, there there are bags by, b, in T where every bag b on
Pb,.b, separates u from v in G.

10/17



Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G.
Lemma

For any u, v in G, there there are bags by, b, in T where every bag b on
Pb,.b, separates u from v in G.

10/17



Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G.
Lemma

For any u, v in G, there there are bags by, b, in T where every bag b on
Pb,.b, separates u from v in G.

10/17



Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G.
Lemma

For any u, v in G, there there are bags by, b, in T where every bag b on
Pb,.b, separates u from v in G.

10/17



Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G.
Lemma

For any u, v in G, there there are bags by, b, in T where every bag b on
Pb,.b, separates u from v in G.

A way to break the query!
For any bag b € Pbu,bvv |[pu,v]] = @Wevbl[/)U,W]] & |IpW,V]]

10/17



Intra-procedural algorithm #2 via tree decomposition

Idea:

@ Always choose b to be the least common ancestor bag of b,, b, in T.

Picking Vp = {2,3,6},
[p11,10] = ([p11,2] ® [p2,10]) ® ([p12,3] ® [p3,10]) © ([r11,6] © [p6,10])

11/17



Intra-procedural algorithm #2 via tree decomposition

Idea:
@ Always choose b to be the least common ancestor bag of b,, b, in T.

o Define “special queries” to be all pairs (u, v) where b, is an
ancestor/descendant of a b, .

Picking Vp = {2,3,6},
[p11,10] = ([p11,2] ® [p2,10]) ® ([p12,3] ® [p3,10]) © ([p11,6] ® [p6,10])

11/17



Intra-procedural algorithm #2 via tree decomposition

Idea:

@ Always choose b to be the least common ancestor bag of b,, b, in T.

o Define “special queries” to be all pairs (u, v) where b, is an
ancestor/descendant of a b,.

Preprocessing: precompute all special queries.

Query (u, v):

e Find b, and b,.

o Let byca := LCA(by, by), the least common ancestor in T.

@ return

[pu] = @ [ouw] @ [ow,v]-

weEbj ca

11/17



Intra-procedural algorithm #2 via tree decomposition

Idea:

@ Always choose b to be the least common ancestor bag of b,, b, in T.

o Define “special queries” to be all pairs (u, v) where b, is an
ancestor/descendant of a b,.

Preprocessing: precompute all special queries.

Query (u, v):

e Find b, and b,.

o Let byca := LCA(by, by), the least common ancestor in T.

@ return

[pu] = @ [ouw] @ [ow,v]-

weEbj ca

Number of “special queries” = O(n - height of the TD).

11/17



Intra-procedural algorithm #2 via tree decomposition

Idea:

@ Always choose b to be the least common ancestor bag of b,, b, in T.

o Define “special queries” to be all pairs (u, v) where b, is an
ancestor/descendant of a b,.

Preprocessing: precompute all special queries.

Query (u, v):

e Find b, and b,.

o Let byca := LCA(by, by), the least common ancestor in T.

@ return

[pu] = @ [ouw] @ [ow,v]-

weEbj ca

Number of “special queries” = O(n - height of the TD).
Problem: if tree decomposition is too long = O(n?) special queries.

11/17



Intra-procedural algorithm #2 via tree 4+ centroid decomp.

Solution: build a centroid decomposition T' of the tree decomposition T,
which has height O(log n).

12/17



Intra-procedural algorithm #2 via tree 4+ centroid decomp.

Solution: build a centroid decomposition T' of the tree decomposition T,
which has height O(log n).

@ Apply previous slide with b, ca being LCA in T/ not T.

12/17



Intra-procedural algorithm #2 via tree 4+ centroid decomp.

Solution: build a centroid decomposition T' of the tree decomposition T,
which has height O(log n).

@ Apply previous slide with b, ca being LCA in T/ not T.
Number of “special queries” = O(n - log n).
We precompute all special queries in O(n-logn - k).

12/17



Inter-procedural algorithm

— We extend our algorithm by exploiting sparsity of the call graph.
— Capture the sparsity using treedepth.

See the paper for details.

13/17



Agenda

© Experiments and conclusion

14/17



Experiments

1. IFDS dataflow analyses (reachability, uninitialized variables, null-ptr):

@ Each algebra element is the graph representation of IFDS.

@ Used programs from DaCapo benchmarks.

Comparison of our algorithms vs. running Tarjan's algo. at every query:

Dead-code elimination Uninitialized variables Null-pointer
A 10° AA A
A a A 104 A A 4
A
a R 100 A A A A A,y R A A
AL, A AA A
A A 10°
IS . o«
< L <
LN ] 2
. _— 102/ B - . [ L e am . (1]
= L]
- .
" [ ] M [ ]
™ 10t 10"

620000 40000 60000 80000 100000126000

Benchmark size

0

20000 40000 60000 80000 100000120000
Benchmark size

20000 40000 60000 80000 100000120000
Benchmark size

15/17



Experiments

2. Analysis of boolean programs:
@ Each algebra element is a state transformer represented by a BDD.

@ Used boolean programs generated from applying Predicate
Abstraction on Windows drivers.

Comparison of our algorithms vs. running Tarjan's algo. at every query:

Predicate abstraction

™ st
A
| s Yy .
o 10°
<
.
102 :‘ : I-I..
| ]
10t i’

40000 60000 80000 100000 120000

Benchmark size

16/17



Conclusion

Fast algorithms for on-demand algebraic program analysis.

e Exploiting sparseness of CFGs (via treewidth) to handle the
intra-procedural queries.

e Exploiting sparseness of CGs (via treedepth) to extend the solution to
the inter-procedural case.

@ Experiments showing efficiency in comparison with using Tarjan’s
algorithm.

17/17



Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a CFG G = (V, E) of a single function,

— an algebra (A, @, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, /), compute [[p; ;] where (p; ;) = Pathsg(i, ).

1/4




Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis
Offline input: (can be preprocessed)
— a CFG G = (V, E) of a single function,

— an algebra (A, &, ®,®,0,1),
— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, /), compute [[p; ;] where (p; ;) = Pathsg(i, ).

Existing solutions (n = |V/| & |E|, cost per algebra operation is k):

1/4




Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis
Offline input: (can be preprocessed)

— a CFG G = (V, E) of a single function,

— an algebra (A, &, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, /), compute [[p; ;] where (p; ;) = Pathsg(i, ).

Existing solutions (n = |V/| & |E|, cost per algebra operation is k):
—Kleene’s NFA-to-regexp translation:
@ Works for arbitrary graphs.

@ Precomputes all queries in O(n® - k). Too slow.

1/4




Intra-procedural algorithms
Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a CFG G = (V, E) of a single function,

— an algebra (A, ®,®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, /), compute [[p; ;] where (p; ;) = Pathsg(i, ).

Existing solutions (n = |V/| & |E|, cost per algebra operation is k):
—Kleene’s NFA-to-regexp translation:

@ Works for arbitrary graphs.

@ Precomputes all queries in O(n® - k). Too slow.
—Tarjan’s algorithm:

@ Works on reducible flow graphs (~ CFGs).

@ Answers all queries (i, —) for a fixed i in O(na(n) - k).

@ Doesn't suit our on-demand setting:

— for n queries with different i's, naive repetition == Q(n?) time.

1/4



Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis
Offline input: (can be preprocessed)

— a CFG G = (V, E) of a single function,

— an algebra (A, &, ®,®,0,1),
— a semantic function [-] : E — A.
Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, /), compute [[p; ;] where (p; ;) = Pathsg(i, ).

— The paper presents two algorithms:

1/4



Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a CFG G = (V, E) of a single function,

— an algebra (A, &, ®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, /), compute [[p; ;] where (p; ;) = Pathsg(i, ).

— The paper presents two algorithms:

Algorithm #1:
@ Operates directly on the structure of CFG.
@ Assumes programs have constant nesting depth.
@ Preprocessing: O(n-loglogn - k); query O(k).

1/4




Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a CFG G = (V, E) of a single function,

— an algebra (A, ®,®,®,0,1),

— a semantic function [-] : E — A.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, /), compute [[p; ;] where (p; ;) = Pathsg(i, ).

— The paper presents two algorithms:
Algorithm #1:
@ Operates directly on the structure of CFG.
@ Assumes programs have constant nesting depth.
@ Preprocessing: O(n-loglogn - k); query O(k).
Algorithm #2:
@ Operates on the “tree decomposition” of the CFG.
@ Assumes CFGs have constant treewidth: more robust assumption.
@ Preprocessing: O(n-logn - k); query O(k).

1/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |

break, | continue,
Preprocessing:

2/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |
break, | continue,

Preprocessing:
@ Structurally recursive: before processing P, process its subprograms first.

branchg
Py,
P,
ends;
T4

loop;

2/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |

break, | continue,
Preprocessing:

@ Structurally recursive: before processing P, process its subprograms first.

@ For each sub-program, precompute queries only at the top-level.

branchg
Py,
P,
ends;
T4

loop;

2/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |
break, | continue,
Preprocessing:

@ Structurally recursive: before processing P, process its subprograms first.
@ For each sub-program, precompute queries only at the top-level.

P
015 a
09; b
branchg
P
1 c®[ml ® ® [p2] ® f
P,
ends; 9
045 h
loops 1Q®Mm]®J
TR [m] ®1
Pl
1@ [n3] ® m
ends;

l

2/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |
break, | continue,
Preprocessing:

@ Structurally recursive: before processing P, process its subprograms first.
@ For each sub-program, precompute queries only at the top-level.

P Lp
L a a
T2; b
branchg
P H
Pl’ Gp, c®InI®F Aol ® f c®pI®el®d® (o] ® f
p) \
ends; g ;
74 h R (i@ [m] Q@i ® 1] ® )¢
1oops - i® Ml ®
"""""""" o TR [m] ®1 . .
) 6:"“>® continue; . (RMMI®JFO @ ] ®1®
P’ Gpn .
breaks E 1Q 3] ®m ®(k @1 ®[ns] ®m)
ends; . !
]

2/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |
break, | continue,

Preprocessing:

@ Structurally recursive: before processing P, process its subprograms first.
@ For each sub-program, precompute queries only at the top-level.

@ Build a sqrt-tree data structure to efficiently answer same-level queries.

2/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |
break, | continue,

Preprocessing:
@ Structurally recursive: before processing P, process its subprograms first.

@ For each sub-program, precompute queries only at the top-level.
@ Build a sqrt-tree data structure to efficiently answer same-level queries.

To answer a query (/,j), a path i ~ j either:
@ Visits some node at the top-level,

@ Or it doesn't

2/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |
break, | continue,
Preprocessing:
@ Structurally recursive: before processing P, process its subprograms first.

@ For each sub-program, precompute queries only at the top-level.
@ Build a sqrt-tree data structure to efficiently answer same-level queries.

To answer a query (/,j), a path i ~ j either:
@ Visits some node at the top-level,
— can be answered with the sqrt-tree.
@ Or it doesn't
— reduces to a query in a subprogram with smaller depth.

2/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |
break, | continue,
Preprocessing:
@ Structurally recursive: before processing P, process its subprograms first.

@ For each sub-program, precompute queries only at the top-level.
@ Build a sqrt-tree data structure to efficiently answer same-level queries.

To answer a query (/,j), a path i ~ j either:
@ Visits some node at the top-level,
— can be answered with the sqrt-tree.
@ Or it doesn't
— reduces to a query in a subprogram with smaller depth.
@ Answers for different paths are combined with @& and ®

2/4



Intra-procedural algorithm #1
P:=o | P;P | branch; P,P,...,P end, | loop, P end, |
break, | continue,
Preprocessing:
@ Structurally recursive: before processing P, process its subprograms first.

@ For each sub-program, precompute queries only at the top-level.
@ Build a sqrt-tree data structure to efficiently answer same-level queries.

To answer a query (/,j), a path i ~ j either:
@ Visits some node at the top-level,
— can be answered with the sqrt-tree.
@ Or it doesn't
— reduces to a query in a subprogram with smaller depth.
@ Answers for different paths are combined with @& and ®
o Efficiency relies on having a small nesting depth.

2/4



Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1,...,fm}, Ec), (fi,f}) € Ec <= {f; calls f;}.

3/4



Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1,...,fm}, Ec), (fi,f}) € Ec <= {f; calls f;}.
Treedepth:
o (Informally) measures for a graph how similar it is to a shallow tree.

3/4



Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1,...,fm}, Ec), (fi,f}) € Ec <= {f; calls f;}.

Treedepth:

o (Informally) measures for a graph how similar it is to a shallow tree.

@ Small-treedepth graphs admit a depth decomposition with small depth.

@ Similar to treewidth, such decomposition enable us to successively divide
a graph into smaller components separated by small cuts.

0‘0’9

(D
6‘6‘0 ®

3/4



Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1,...,fm}, Ec), (fi,f}) € Ec <= {f; calls f;}.

Treedepth:

o (Informally) measures for a graph how similar it is to a shallow tree.

@ Small-treedepth graphs admit a depth decomposition with small depth.

@ Similar to treewidth, such decomposition enable us to successively divide
a graph into smaller components separated by small cuts.

@ We assume CGs have small treedepth w.r.t. program size; justified
experimentally.

0‘0’9 (D

6‘6‘0 ®

3/4



Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1,...,fm}, Ec), (fi,f}) € Ec <= {f; calls f;}.

Treedepth:

(Informally) measures for a graph how similar it is to a shallow tree.

Small-treedepth graphs admit a depth decomposition with small depth.

Similar to treewidth, such decomposition enable us to successively divide
a graph into smaller components separated by small cuts.

@ We assume CGs have small treedepth w.r.t. program size; justified

experimentally.
@ We exploit this assumption to efficiently solve the inter-procedural case.

0‘0’9 (D

6‘6‘0 ®

3/4



Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a augmented graph G = (V, E) (union of CFGs + call edges),

— an algebra (A, ®,®,®,0,1), a semantic function [] : E A

— for each function f;, a value [f;] summarizing f;’s execution.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, j), compute [[p; ;] where (p; ;) = Pathsz(i, ).

4/4




Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a augmented graph G = (V, E) (union of CFGs + call edges),

— an algebra (A, ®,®,®,0,1), a semantic function [-] : E A

— for each function f;, a value [[f;] summarizing f;'s execution.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, j), compute [[p; ;] where (p; ;) = Pathsz(i, ).

Function summaries are given — no return edges — same as the intra-
procedural case, but on a larger graph with different structure.

4/4




Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a augmented graph G = (V, E) (union of CFGs + call edges),

— an algebra (A, ®,®,®,0,1), a semantic function [-] : E A

— for each function f;, a value [[f;] summarizing f;'s execution.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, j), compute [[p; ;] where (p; ;) = Pathsz(i, ).

Function summaries are given — no return edges — same as the intra-

procedural case, but on a larger graph with different structure.
Preprocessing:

4/4




Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a augmented graph G = (V, E) (union of CFGs + call edges),

— an algebra (A, ®,®,®,0,1), a semantic function [-] : E A

— for each function f;, a value [[f;] summarizing f;'s execution.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, j), compute [[p; ;] where (p; ;) = Pathsz(i, ).

Function summaries are given — no return edges — same as the intra-

procedural case, but on a larger graph with different structure.
Preprocessing:

@ Run the intra-procedural algorithm for each function.

4/4




Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a augmented graph G = (V, E) (union of CFGs + call edges),

— an algebra (A, ®,®,®,0,1), a semantic function [-] : E A

— for each function f;, a value [[f;] summarizing f;'s execution.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (i, j), compute [[p; ;] where (p;;) = Pathsz(i, )

Function summaries are given — no return edges — same as the intra-

procedural case, but on a larger graph with different structure.

Preprocessing:

@ Run the intra-procedural algorithm for each function.

@ For each CG edge (f;, f;), compute a value [(f;, f;)] summarizing all all
paths lying in f; with only last vertex in f;.

4/4




Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a augmented graph G = (V, E) (union of CFGs + call edges),

— an algebra (A, ®,®,®,0,1), a semantic function [-] : E A

— for each function f;, a value [[f;] summarizing f;'s execution.

Online input: a series of queries (7, ), each is a pair of program points.

Output: for each query (i, j), compute [[p; ;] where (p; ;) = Pathsz(i, ).

Function summaries are given — no return edges — same as the intra-

procedural case, but on a larger graph with different structure.

Preprocessing:

@ Run the intra-procedural algorithm for each function.

@ For each CG edge (f;, f;), compute a value [(f;, f;)] summarizing all all
paths lying in f; with only last vertex in f;.

Break a query into: intra-procedural queries, and call-graph queries.

4/4




Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

— a augmented graph G = (V, E) (union of CFGs + call edges),

— an algebra (A, ®,®,®,0,1), a semantic function [-] : E A

— for each function f;, a value [[f;] summarizing f;'s execution.

Online input: a series of queries (7, ), each is a pair of program points.
Output: for each query (i, j), compute [[p; ;] where (p; ;) = Pathsz(i, ).

Function summaries are given — no return edges — same as the intra-

procedural case, but on a larger graph with different structure.

Preprocessing:

@ Run the intra-procedural algorithm for each function.

@ For each CG edge (f;, f;), compute a value [(f;, f;)] summarizing all all
paths lying in f; with only last vertex in f;.

Break a query into: intra-procedural queries, and call-graph queries.

Answering call-graph queries: find depth decomp. — convert to tree de-

comp — apply treewidth-based algorithm. Done!
4/4




	Context and contribution
	Algorithms
	Experiments and conclusion
	Appendix

