Exploiting the Sparseness of Control-flow and Call Graphs for Efficient and On-demand Algebraic Program Analysis

Giovanna K. Conrado, Amir K. Goharshady, Kerim Kochekov, Yun Chen Tsai, and <u>Ahmed K. Zaher</u>

October 26th, 2023

Agenda

Context and contribution

2 Algorithms

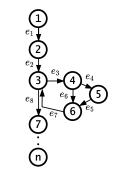
3 Experiments and conclusion

Agenda

Context and contribution

2 Algorithms

3 Experiments and conclusion



Universe of summaries A

$$egin{align} \llbracket \cdot
rbracket : E &
ightarrow A \ (A, \oplus, \otimes, \circledast, \overline{0}, \overline{1}) \ &\{X_{i,j}\}_{i,j \in \{1\dots n\}} \ \end{gathered}$$

Algebraic approach to find $X_{i,j}$:

Algebraic approach to find $X_{i,j}$:

• Find a regular expression $\rho_{i,j}$ over E recognizing exactly Paths(i,j):

$$\rho_{2,7} = e_2 \cdot \left(e_3 \cdot \left(e_6 + e_4 \cdot e_5\right) \cdot e_7\right)^* \cdot e_8.$$

Algebraic approach to find $X_{i,j}$:

• Find a regular expression $\rho_{i,j}$ over E recognizing exactly Paths(i,j):

$$\rho_{2,7} = e_2 \cdot \left(e_3 \cdot \left(e_6 + e_4 \cdot e_5\right) \cdot e_7\right)^* \cdot e_8.$$

2 To obtain $X_{i,j}$, interpret $\rho_{i,j}$ using the algebra:

$$X_{2,7} = \llbracket \rho_{2,7} \rrbracket = \llbracket e_2 \rrbracket \otimes \left(\llbracket e_3 \rrbracket \otimes \left(\llbracket e_6 \rrbracket \oplus \llbracket e_4 \rrbracket \otimes \llbracket e_5 \rrbracket \right) \otimes \llbracket e_7 \rrbracket \right)^{\circledast} \otimes \llbracket e_8 \rrbracket.$$

Algebraic approach to find $X_{i,j}$:

• Find a regular expression $\rho_{i,j}$ over E recognizing exactly Paths(i,j):

$$\rho_{2,7} = e_2 \cdot \left(e_3 \cdot \left(e_6 + e_4 \cdot e_5\right) \cdot e_7\right)^* \cdot e_8.$$

2 To obtain $X_{i,j}$, interpret $\rho_{i,j}$ using the algebra:

$$X_{2,7} = \llbracket \rho_{2,7} \rrbracket = \llbracket \mathsf{e}_2 \rrbracket \otimes \left(\llbracket \mathsf{e}_3 \rrbracket \otimes \left(\llbracket \mathsf{e}_6 \rrbracket \oplus \llbracket \mathsf{e}_4 \rrbracket \otimes \llbracket \mathsf{e}_5 \rrbracket \right) \otimes \llbracket \mathsf{e}_7 \rrbracket \right)^{\circledast} \otimes \llbracket \mathsf{e}_8 \rrbracket.$$

Applications: numerical invariant generation, predicate abstraction.

On-demand Algebraic program analysis

```
1 int main () {
2     int x = 50, y = 0;
3     while (x-- >= 0) {
4         if (x & 1)
5         y += 3;
6         y = y * 2;
7     }
... ...
n }

Universe of summaries A
[\cdot]: E \to A
(A, \oplus, \otimes, \otimes, \overline{0}, \overline{1})
\{X_{i,j}\}_{i,j \in \{1...n\}}
```

On-demand: a large stream of online queries (i,j) asking for $X_{i,j}$.

On-demand Algebraic program analysis

On-demand: a large stream of online queries (i,j) asking for $X_{i,j}$.

Goal: answer these queries fast.

On-demand Algebraic program analysis

On-demand: a large stream of online queries (i,j) asking for $X_{i,j}$.

Goal: answer these queries fast.

Why?

On-demand algebraic program analysis

On-demand algebraic program analysis

Offline input: (can be preprocessed)

- a program P,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

On-demand algebraic program analysis

Offline input: (can be preprocessed)

- a program P,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i, j), each is a pair of program points.

On-demand algebraic program analysis

Offline input: (can be preprocessed)

- a program P,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i, j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_P(i,j)$.

On-demand algebraic program analysis

Offline input: (can be preprocessed)

- a program P,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_P(i,j)$.

Exploiting the Sparseness of Control-flow and Call Graphs for Efficient and On-demand Algebraic Program Analysis

On-demand algebraic program analysis

Offline input: (can be preprocessed)

- a program P,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i, j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_P(i,j)$.

Our contribution: algorithms to solve this efficiently.

On-demand algebraic program analysis

Offline input: (can be preprocessed)

- a program P,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_P(i,j)$.

Our contribution: algorithms to solve this efficiently.

- Preprocessing: precompute queries of special forms.
- Query: express input queries as combination of precomputed queries.
- Light preprocessing and fast query time.

On-demand algebraic program analysis

Offline input: (can be preprocessed)

- a program P,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_P(i,j)$.

Our contribution: algorithms to solve this efficiently.

- Preprocessing: precompute queries of special forms.
- Query: express input queries as combination of precomputed queries.
- Light preprocessing and fast query time.

Intra-procedural case: we exploit sparsity of control-flow graphs.

On-demand algebraic program analysis

Offline input: (can be preprocessed)

- a program P,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_P(i,j)$.

Our contribution: algorithms to solve this efficiently.

- Preprocessing: precompute queries of special forms.
- Query: express input queries as combination of precomputed queries.
- Light preprocessing and fast query time.

Intra-procedural case: we **exploit sparsity of control-flow graphs.**Inter-procedural case:

- We assume function summaries are computed and are given in input.
- We additionally exploit sparsity of call graphs.

On-demand algebraic program analysis

Offline input: (can be preprocessed)

- a program P,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_P(i,j)$.

Exploiting the Sparseness of Control-flow and Call Graphs for Efficient and On-demand Algebraic Program Analysis

Agenda

Context and contribution

2 Algorithms

3 Experiments and conclusion

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1}),$
- a semantic function $\llbracket \cdot \rrbracket$: $E \rightarrow A$.

Online input: a series of queries (i, j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

- $-n = |V| \approx |E|$, cost per algebra operation is k:
- Tarjan's algorithm:
 - Works on reducible flow graphs (\approx CFGs).
 - Answers all queries (i, -) for a fixed i in $O(n\alpha(n) \cdot k)$.
 - Doesn't suit our on-demand setting:
 - for *n* queries with different *i*'s, naive repetition $\implies \Omega(n^2)$ time.

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket$: $E \to A$.

Online input: a series of queries (i, j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

- The paper presents two algorithms:

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket$: $E \to A$.

Online input: a series of queries (i, j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

- The paper presents two algorithms:

Algorithm #1: exploits nesting depth. See the paper.

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket$: $E \rightarrow A$.

Online input: a series of queries (i, j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

- The paper presents two algorithms:

Algorithm #1: exploits nesting depth. See the paper.

Algorithm #2: exploits treewidth.

Treewidth of CFGs

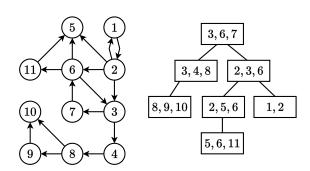
Treewidth:

• (Informally) a parameter that measures "tree-likeness" of a graph.

Treewidth of CFGs

Treewidth:

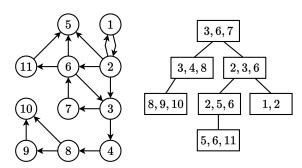
- (Informally) a parameter that measures "tree-likeness" of a graph.
- Small-treewidth graphs admit a tree decomposition with small bags.
- Such decomposition enable us to successively break a graph into smaller disconnected graphs separated by small cuts.



Treewidth of CFGs

Treewidth:

- (Informally) a parameter that measures "tree-likeness" of a graph.
- Small-treewidth graphs admit a tree decomposition with small bags.
- Such decomposition enable us to successively break a graph into smaller disconnected graphs separated by small cuts.
- CFGs have constant treewidth (Thorup '98).



Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket$: $E \rightarrow A$,
- a tree decomposition T of G with small bags.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket$: $E \rightarrow A$,
- a tree decomposition T of G with small bags.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

Naive: n^2 possible queries, precompute all of them.

⇒ takes too much time and space.

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket$: $E \rightarrow A$,
- a tree decomposition T of G with small bags.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

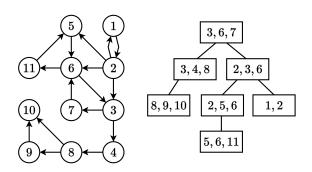
Naive: n^2 possible queries, precompute all of them.

 \implies takes too much time and space.

Better: precompute only "special queries" having a certain form s.t.,

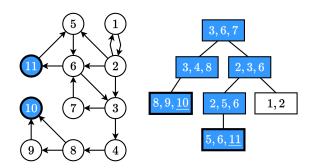
- Expressiveness: a general query can be expressed with special queries.
- **Space:** the number of special queries should be $\ll n^2$.
- Time: total runtime should be small.

We look at the tree decomposition T of the CFG G.



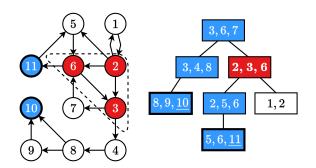
We look at the tree decomposition T of the CFG G.

Lemma



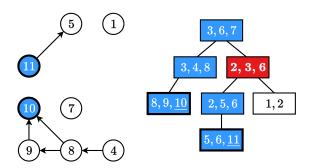
We look at the tree decomposition T of the CFG G.

Lemma



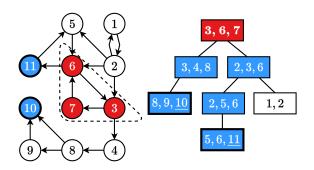
We look at the tree decomposition T of the CFG G.

Lemma



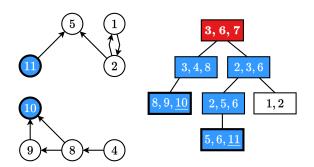
We look at the tree decomposition T of the CFG G.

Lemma



We look at the tree decomposition T of the CFG G.

Lemma



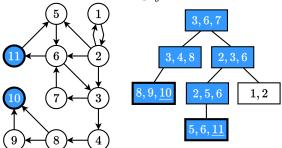
We look at the tree decomposition T of the CFG G.

Lemma

For any u, v in G, there there are bags b_u, b_v in T where every bag b on P_{b_u,b_v} separates u from v in G.

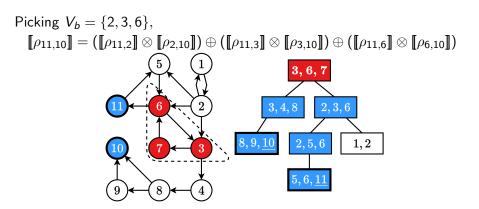
A way to break the query!

For any bag $b \in P_{b_u,b_v}$, $\llbracket \rho_{u,v} \rrbracket = \bigoplus_{w \in V_b} \llbracket \rho_{u,w} \rrbracket \otimes \llbracket \rho_{w,v} \rrbracket$



Idea:

• Always choose b to be the least common ancestor bag of b_u , b_v in T.



Idea:

- Always choose b to be the least common ancestor bag of b_u , b_v in T.
- Define "special queries" to be all pairs (u, v) where b_u is an ancestor/descendant of a b_v .

Picking $V_b = \{2, 3, 6\},\$ $\llbracket \rho_{11,10} \rrbracket = (\llbracket \rho_{11,2} \rrbracket \otimes \llbracket \rho_{2,10} \rrbracket) \oplus (\llbracket \rho_{11,3} \rrbracket \otimes \llbracket \rho_{3,10} \rrbracket) \oplus (\llbracket \rho_{11,6} \rrbracket \otimes \llbracket \rho_{6,10} \rrbracket)$ 3, 6, 7 3, 4, 8

Idea:

- Always choose b to be the least common ancestor bag of b_u , b_v in T.
- Define "special queries" to be all pairs (u, v) where b_u is an ancestor/descendant of a b_v .

Preprocessing: precompute all special queries. Query (u, v):

- Find b_{μ} and b_{ν} .
- Let $b_{LCA} := LCA(b_u, b_v)$, the least common ancestor in T.
- return

$$\llbracket \rho_{u,v} \rrbracket = \bigoplus_{w \in b_{ICA}} \llbracket \rho_{u,w} \rrbracket \otimes \llbracket \rho_{w,v} \rrbracket.$$

Idea:

- Always choose b to be the least common ancestor bag of b_u , b_v in T.
- Define "special queries" to be all pairs (u, v) where b_u is an ancestor/descendant of a b_v .

Preprocessing: precompute all special queries. Query (u, v):

- Find b_{μ} and b_{ν} .
- Let $b_{LCA} := LCA(b_u, b_v)$, the least common ancestor in T.
- return

$$\llbracket \rho_{u,v} \rrbracket = \bigoplus_{w \in b_{LCA}} \llbracket \rho_{u,w} \rrbracket \otimes \llbracket \rho_{w,v} \rrbracket.$$

Number of "special queries" = $O(n \cdot \text{height of the TD})$.

Idea:

- Always choose b to be the least common ancestor bag of b_u , b_v in T.
- Define "special queries" to be all pairs (u, v) where b_u is an ancestor/descendant of a b_v .

Preprocessing: precompute all special queries.

Query (u, v):

- Find b_u and b_v .
- Let $b_{LCA} := LCA(b_u, b_v)$, the least common ancestor in T.
- return

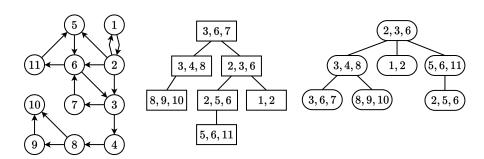
$$\llbracket \rho_{u,v} \rrbracket = \bigoplus_{w \in b_{LCA}} \llbracket \rho_{u,w} \rrbracket \otimes \llbracket \rho_{w,v} \rrbracket.$$

Number of "special queries" = $O(n \cdot \text{height of the TD})$.

Problem: if tree decomposition is too long $\implies O(n^2)$ special queries.

Intra-procedural algorithm #2 via tree + centroid decomp.

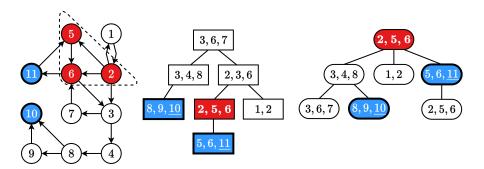
Solution: build a centroid decomposition T' of the tree decomposition T, which has height $O(\log n)$.



Intra-procedural algorithm #2 via tree + centroid decomp.

Solution: build a centroid decomposition T' of the tree decomposition T, which has height $O(\log n)$.

• Apply previous slide with b_{LCA} being LCA in T' not T.



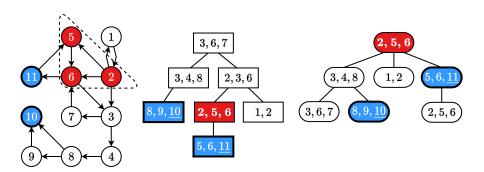
Intra-procedural algorithm #2 via tree + centroid decomp.

Solution: build a centroid decomposition T' of the tree decomposition T, which has height $O(\log n)$.

• Apply previous slide with b_{LCA} being LCA in T' not T.

Number of "special queries" = $O(n \cdot \log n)$.

We precompute all special queries in $O(n \cdot \log n \cdot k)$.



- We extend our algorithm by exploiting sparsity of the call graph.
- Capture the sparsity using treedepth.

See the paper for details.

Agenda

Context and contribution

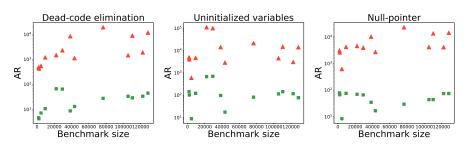
2 Algorithms

Second Second

Experiments

- 1. IFDS dataflow analyses (reachability, uninitialized variables, null-ptr):
 - Each algebra element is the graph representation of IFDS.
 - Used programs from DaCapo benchmarks.

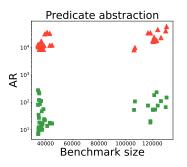
Comparison of our algorithms vs. running Tarjan's algo. at every query:



Experiments

- 2. Analysis of boolean programs:
 - Each algebra element is a state transformer represented by a BDD.
 - Used boolean programs generated from applying Predicate Abstraction on Windows drivers.

Comparison of our algorithms vs. running Tarjan's algo. at every query:



Conclusion

Fast algorithms for on-demand algebraic program analysis.

- Exploiting sparseness of CFGs (via treewidth) to handle the intra-procedural queries.
- Exploiting sparseness of CGs (via treedepth) to extend the solution to the inter-procedural case.
- Experiments showing efficiency in comparison with using Tarjan's algorithm.

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1}),$
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i, j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1}),$
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i, j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

Existing solutions $(n = |V| \approx |E|$, cost per algebra operation is k):

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

Existing solutions $(n = |V| \approx |E|$, cost per algebra operation is k):

- —Kleene's NFA-to-regexp translation:
 - Works for arbitrary graphs.
 - Precomputes all queries in $O(n^3 \cdot k)$. Too slow.

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1}),$
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

Existing solutions $(n = |V| \approx |E|$, cost per algebra operation is k):

- —Kleene's NFA-to-regexp translation:
 - Works for arbitrary graphs.
 - Precomputes all queries in $O(n^3 \cdot k)$. Too slow.
- —Tarjan's algorithm:
 - Works on reducible flow graphs (\approx CFGs).
 - Answers all queries (i, -) for a fixed i in $O(n\alpha(n) \cdot k)$.
 - Doesn't suit our on-demand setting:
 - for *n* queries with different *i*'s, naive repetition $\implies \Omega(n^2)$ time.

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1}),$
- a semantic function $\llbracket \cdot \rrbracket$: $E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

—The paper presents two algorithms:

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

—The paper presents two algorithms:

Algorithm #1:

- Operates directly on the structure of CFG.
- Assumes programs have constant nesting depth.
- Preprocessing: $O(n \cdot \log \log n \cdot k)$; query O(k).

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a CFG G = (V, E) of a single function,
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$,
- a semantic function $\llbracket \cdot \rrbracket : E \to A$.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_G(i,j)$.

—The paper presents two algorithms:

Algorithm #1:

- Operates directly on the structure of CFG.
- Assumes programs have constant nesting depth.
- Preprocessing: $O(n \cdot \log \log n \cdot k)$; query O(k).

Algorithm #2:

- Operates on the "tree decomposition" of the CFG.
- Assumes CFGs have constant treewidth: more robust assumption.
- Preprocessing: $O(n \cdot \log n \cdot k)$; query O(k).

```
P := \sigma \mid P; P \mid \mathtt{branch}_l \; P, P, \dots, P \; \mathtt{end}_l \mid \mathtt{loop}_l \; P \; \mathtt{end}_l \mid \mathtt{break}_l \mid \mathtt{continue}_l
```

```
P := \sigma \mid P; P \mid \text{branch}_{I} \mid P, P, \dots, P \mid \text{end}_{I} \mid \text{loop}_{I} \mid P \mid \text{end}_{I} \mid
\text{break}_{I} \mid \text{continue}_{I}
```

Preprocessing:

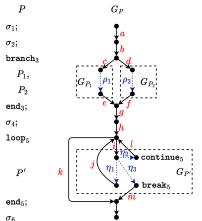
 \bullet Structurally recursive: before processing P, process its subprograms first.

```
P
\sigma_1;
\sigma_2;
pranch_3
P_1,
P_2
pranch_3;
rac{1}{2}
rac{1}
rac{1}
rac{1}{2}
rac{1}
rac{1}
rac{1}
rac{1}
rac{
```

 $\mathtt{end}_5;$ σ_6

```
P := \sigma \mid P; P \mid \text{branch}_{I} \mid P, P, \dots, P \mid \text{end}_{I} \mid \text{loop}_{I} \mid P \mid \text{end}_{I} \mid
\text{break}_{I} \mid \text{continue}_{I}
```

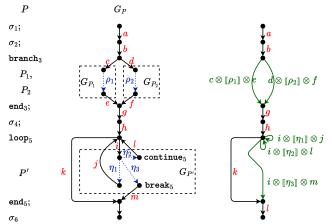
- ullet Structurally recursive: before processing P, process its subprograms first.
- For each sub-program, precompute queries only at the top-level.



$$P := \sigma \mid P; P \mid \text{branch}_{I} \mid P, P, \dots, P \mid \text{end}_{I} \mid \text{loop}_{I} \mid P \mid \text{end}_{I} \mid$$

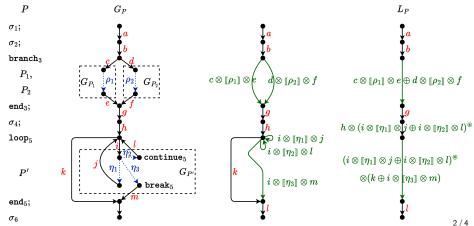
$$\text{break}_{I} \mid \text{continue}_{I}$$

- ullet Structurally recursive: before processing P, process its subprograms first.
- For each sub-program, precompute queries only at the top-level.



$$P := \sigma \mid P; P \mid \text{branch}_{l} \mid P, P, \dots, P \mid \text{end}_{l} \mid \text{loop}_{l} \mid P \mid \text{end}_{l} \mid \text{break}_{l} \mid \text{continue}_{l}$$

- ullet Structurally recursive: before processing P, process its subprograms first.
- For each sub-program, precompute queries only at the top-level.



$$P := \sigma \mid P; P \mid \text{branch}_{I} \mid P, P, \dots, P \mid \text{end}_{I} \mid \text{loop}_{I} \mid P \mid \text{end}_{I} \mid \text{break}_{I} \mid \text{continue}_{I}$$

- ullet Structurally recursive: before processing P, process its subprograms first.
- For each sub-program, precompute queries only at the top-level.
- Build a sqrt-tree data structure to efficiently answer same-level queries.

$$P := \sigma \mid P; P \mid \text{branch}_{I} \mid P, P, \dots, P \mid \text{end}_{I} \mid \text{loop}_{I} \mid P \mid \text{end}_{I} \mid$$

$$\text{break}_{I} \mid \text{continue}_{I}$$

Preprocessing:

- ullet Structurally recursive: before processing P, process its subprograms first.
- For each sub-program, precompute queries only at the top-level.
- Build a sqrt-tree data structure to efficiently answer same-level queries.

- Visits some node at the top-level,
- Or it doesn't

$$P := \sigma \mid P; P \mid \text{branch}_{I} \mid P, P, \dots, P \mid \text{end}_{I} \mid \text{loop}_{I} \mid P \mid \text{end}_{I} \mid \text{break}_{I} \mid \text{continue}_{I}$$

Preprocessing:

- ullet Structurally recursive: before processing P, process its subprograms first.
- For each sub-program, precompute queries only at the top-level.
- Build a sqrt-tree data structure to efficiently answer same-level queries.

- Visits some node at the top-level,
 - can be answered with the sqrt-tree.
- Or it doesn't
 - reduces to a query in a subprogram with smaller depth.

$$P := \sigma \mid P; P \mid \text{branch}_{I} \mid P, P, \dots, P \mid \text{end}_{I} \mid \text{loop}_{I} \mid P \mid \text{end}_{I} \mid \text{break}_{I} \mid \text{continue}_{I}$$

Preprocessing:

- Structurally recursive: before processing *P*, process its subprograms first.
- For each sub-program, precompute queries only at the top-level.
- Build a sqrt-tree data structure to efficiently answer same-level queries.

- Visits some node at the top-level,
 - can be answered with the sqrt-tree.
- Or it doesn't.
 - reduces to a query in a subprogram with smaller depth.
- \bullet Answers for different paths are combined with \oplus and \otimes

$$P := \sigma \mid P; P \mid \text{branch}_{I} \mid P, P, \dots, P \mid \text{end}_{I} \mid \text{loop}_{I} \mid P \mid \text{end}_{I} \mid$$

$$\text{break}_{I} \mid \text{continue}_{I}$$

Preprocessing:

- ullet Structurally recursive: before processing P, process its subprograms first.
- For each sub-program, precompute queries only at the top-level.
- Build a sqrt-tree data structure to efficiently answer same-level queries.

- Visits some node at the top-level,
 - can be answered with the sqrt-tree.
- Or it doesn't.
 - reduces to a query in a subprogram with smaller depth.
- ullet Answers for different paths are combined with \oplus and \otimes
- Efficiency relies on having a small nesting depth.

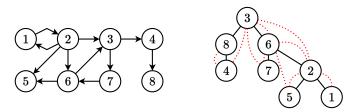
 $\mathsf{Call} \; \mathsf{graph} \; (\mathsf{CG}) \! \colon \mathit{C} = (\{\mathit{f}_1, \ldots, \mathit{f}_m\}, \mathit{E}_\mathit{C}), (\mathit{f}_i, \mathit{f}_j) \in \mathit{E}_\mathit{C} \; \iff \; \{\mathit{f}_i \; \mathsf{calls} \; \mathit{f}_j\}.$

Call graph (CG): $C = (\{f_1, \ldots, f_m\}, E_C), (f_i, f_j) \in E_C \iff \{f_i \text{ calls } f_j\}.$ Treedepth:

• (Informally) measures for a graph how similar it is to a shallow tree.

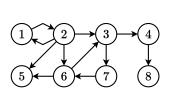
Call graph (CG): $C = (\{f_1, \ldots, f_m\}, E_C), (f_i, f_j) \in E_C \iff \{f_i \text{ calls } f_j\}.$ Treedepth:

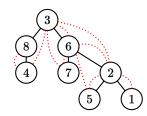
- (Informally) measures for a graph how similar it is to a *shallow tree*.
- Small-treedepth graphs admit a depth decomposition with small depth.
- Similar to treewidth, such decomposition enable us to successively divide
 a graph into smaller components separated by small cuts.



Call graph (CG): $C = (\{f_1, \ldots, f_m\}, E_C), (f_i, f_j) \in E_C \iff \{f_i \text{ calls } f_j\}.$ Treedepth:

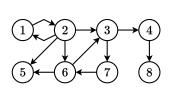
- (Informally) measures for a graph how similar it is to a *shallow tree*.
- Small-treedepth graphs admit a depth decomposition with small depth.
- Similar to treewidth, such decomposition enable us to successively divide a graph into smaller components separated by *small cuts*.
- We assume CGs have small treedepth w.r.t. program size; justified experimentally.

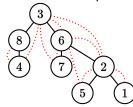




Call graph (CG): $C = (\{f_1, \ldots, f_m\}, E_C), (f_i, f_j) \in E_C \iff \{f_i \text{ calls } f_j\}.$ Treedepth:

- (Informally) measures for a graph how similar it is to a *shallow tree*.
- Small-treedepth graphs admit a depth decomposition with small depth.
- Similar to treewidth, such decomposition enable us to successively divide a graph into smaller components separated by *small cuts*.
- We assume CGs have small treedepth w.r.t. program size; justified experimentally.
- We exploit this assumption to efficiently solve the inter-procedural case.





Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a augmented graph $\widehat{\mathsf{G}} = (\mathsf{V}, \widehat{\mathsf{E}})$ (union of CFGs + call edges),
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$, a semantic function $[\cdot]: \widehat{E} \to A$,
- for each function f_i , a value $\llbracket f_i \rrbracket$ summarizing f_i 's execution.

Online input: a series of queries (i, j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_{\widehat{G}}(i,j)$.

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a augmented graph $\widehat{\mathsf{G}} = (\mathsf{V}, \widehat{\mathsf{E}})$ (union of CFGs + call edges),
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$, a semantic function $\llbracket \cdot
 rbracket : \widehat{E} \to A$,
- for each function f_i , a value $[\![f_i]\!]$ summarizing f_i 's execution.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_{\widehat{G}}(i,j)$.

Function summaries are given \to no return edges \to same as the intraprocedural case, but on a larger graph with different structure.

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a augmented graph $\widehat{\mathsf{G}} = (\mathsf{V}, \widehat{\mathsf{E}})$ (union of CFGs + call edges),
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$, a semantic function $\llbracket \cdot
 rbracket$: $\widehat{E} \to A$,
- for each function f_i , a value $\llbracket f_i \rrbracket$ summarizing f_i 's execution.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_{\widehat{G}}(i,j)$.

Function summaries are given \rightarrow no return edges \rightarrow same as the intraprocedural case, but on a larger graph with different structure. Preprocessing:

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a augmented graph $\widehat{\mathsf{G}} = (\mathsf{V}, \widehat{\mathsf{E}})$ (union of CFGs + call edges),
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$, a semantic function $\llbracket \cdot
 rbracket$: $\widehat{E} \to A$,
- for each function f_i , a value $\llbracket f_i \rrbracket$ summarizing f_i 's execution.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_{\widehat{G}}(i,j)$.

Function summaries are given \rightarrow no return edges \rightarrow same as the intraprocedural case, but on a larger graph with different structure. Preprocessing:

• Run the intra-procedural algorithm for each function.

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a augmented graph $\widehat{\mathsf{G}} = (\mathsf{V}, \widehat{\mathsf{E}})$ (union of CFGs + call edges),
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$, a semantic function $\llbracket \cdot
 rbracket$: $\widehat{E} \to A$,
- for each function f_i , a value $\llbracket f_i \rrbracket$ summarizing f_i 's execution.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_{\widehat{G}}(i,j)$.

Function summaries are given \rightarrow no return edges \rightarrow same as the intraprocedural case, but on a larger graph with different structure. Preprocessing:

- Run the intra-procedural algorithm for each function.
- For each CG edge (f_i, f_j) , compute a value $[(f_i, f_j)]$ summarizing all all paths lying in f_i with only last vertex in f_j .

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a augmented graph $\widehat{\mathsf{G}} = (\mathsf{V}, \widehat{\mathsf{E}})$ (union of CFGs + call edges),
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$, a semantic function $\llbracket \cdot
 rbracket$: $\widehat{E} \to A$,
- for each function f_i , a value $\llbracket f_i \rrbracket$ summarizing f_i 's execution.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_{\widehat{G}}(i,j)$.

Function summaries are given \rightarrow no return edges \rightarrow same as the intraprocedural case, but on a larger graph with different structure. Preprocessing:

- Run the intra-procedural algorithm for each function.
- For each CG edge (f_i, f_j) , compute a value $[(f_i, f_j)]$ summarizing all all paths lying in f_i with only last vertex in f_j .

Break a query into: intra-procedural queries, and call-graph queries.

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)

- a augmented graph $\widehat{\mathsf{G}} = (\mathsf{V}, \widehat{\mathsf{E}})$ (union of CFGs + call edges),
- an algebra $(A, \oplus, \otimes, \circledast, \overline{0}, \overline{1})$, a semantic function $\llbracket \cdot
 rbracket$: $\widehat{E} \to A$,
- for each function f_i , a value $\llbracket f_i \rrbracket$ summarizing f_i 's execution.

Online input: a series of queries (i,j), each is a pair of program points.

Output: for each query (i,j), compute $\llbracket \rho_{i,j} \rrbracket$ where $\langle \rho_{i,j} \rangle = Paths_{\widehat{G}}(i,j)$.

Function summaries are given \rightarrow no return edges \rightarrow same as the intraprocedural case, but on a larger graph with different structure. Preprocessing:

- Run the intra-procedural algorithm for each function.
- For each CG edge (f_i, f_j) , compute a value $[(f_i, f_j)]$ summarizing all all paths lying in f_i with only last vertex in f_j .

Break a query into: intra-procedural queries, and *call-graph queries*. Answering call-graph queries: find depth decomp. \rightarrow convert to tree decomp \rightarrow apply treewidth-based algorithm. Done!