
Exploiting the Sparseness of Control-flow and Call
Graphs for Efficient and On-demand Algebraic

Program Analysis

Giovanna K. Conrado, Amir K. Goharshady, Kerim Kochekov,
Yun Chen Tsai, and Ahmed K. Zaher

October 26th, 2023

1 / 17

Agenda

1 Context and contribution

2 Algorithms

3 Experiments and conclusion

2 / 17

Agenda

1 Context and contribution

2 Algorithms

3 Experiments and conclusion

3 / 17

Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

4 / 17

Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

4 / 17

Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

4 / 17

Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

Algebraic approach to find Xi ,j :

1 Find a regular expression ρi ,j over E recognizing exactly Paths(i , j) :

ρ2,7 = e2 ·
(
e3 ·

(
e6 + e4 · e5

)
· e7

)∗
· e8.

2 To obtain Xi ,j , interpret ρi ,j using the algebra:

X2,7 = [[ρ2,7]] = [[e2]]⊗
(
[[e3]]⊗

(
[[e6]]⊕ [[e4]]⊗ [[e5]]

)
⊗ [[e7]]

)⊛
⊗ [[e8]].

Applications: numerical invariant generation, predicate abstraction.

4 / 17

Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

Algebraic approach to find Xi ,j :
1 Find a regular expression ρi ,j over E recognizing exactly Paths(i , j) :

ρ2,7 = e2 ·
(
e3 ·

(
e6 + e4 · e5

)
· e7

)∗
· e8.

2 To obtain Xi ,j , interpret ρi ,j using the algebra:

X2,7 = [[ρ2,7]] = [[e2]]⊗
(
[[e3]]⊗

(
[[e6]]⊕ [[e4]]⊗ [[e5]]

)
⊗ [[e7]]

)⊛
⊗ [[e8]].

Applications: numerical invariant generation, predicate abstraction.

4 / 17

Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

Algebraic approach to find Xi ,j :
1 Find a regular expression ρi ,j over E recognizing exactly Paths(i , j) :

ρ2,7 = e2 ·
(
e3 ·

(
e6 + e4 · e5

)
· e7

)∗
· e8.

2 To obtain Xi ,j , interpret ρi ,j using the algebra:

X2,7 = [[ρ2,7]] = [[e2]]⊗
(
[[e3]]⊗

(
[[e6]]⊕ [[e4]]⊗ [[e5]]

)
⊗ [[e7]]

)⊛
⊗ [[e8]].

Applications: numerical invariant generation, predicate abstraction.

4 / 17

Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

Algebraic approach to find Xi ,j :
1 Find a regular expression ρi ,j over E recognizing exactly Paths(i , j) :

ρ2,7 = e2 ·
(
e3 ·

(
e6 + e4 · e5

)
· e7

)∗
· e8.

2 To obtain Xi ,j , interpret ρi ,j using the algebra:

X2,7 = [[ρ2,7]] = [[e2]]⊗
(
[[e3]]⊗

(
[[e6]]⊕ [[e4]]⊗ [[e5]]

)
⊗ [[e7]]

)⊛
⊗ [[e8]].

Applications: numerical invariant generation, predicate abstraction.

4 / 17

On-demand Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

On-demand: a large stream of online queries (i , j) asking for Xi ,j .

Goal: answer these queries fast.

Why?

4 / 17

On-demand Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

On-demand: a large stream of online queries (i , j) asking for Xi ,j .

Goal: answer these queries fast.

Why?

4 / 17

On-demand Algebraic program analysis

1 int main () {
2 int x = 50, y = 0;

3 while (x-- >= 0) {
4 if (x & 1)

5 y += 3;
6 y = y * 2;
7 }

.. ..

.. ..

n }

1

2

3

7

4

6

5

n

On-demand: a large stream of online queries (i , j) asking for Xi ,j .

Goal: answer these queries fast.

Why?

4 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

5 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.

Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

5 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.

Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

5 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

5 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

Exploiting the Sparseness of Control-flow and Call Graphs for
Efficient and On-demand Algebraic Program Analysis

5 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

Our contribution: algorithms to solve this efficiently.

– Preprocessing: precompute queries of special forms.
– Query: express input queries as combination of precomputed queries.
– Light preprocessing and fast query time.
Intra-procedural case: we exploit sparsity of control-flow graphs.
Inter-procedural case:

We assume function summaries are computed and are given in input.
We additionally exploit sparsity of call graphs.

5 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

Our contribution: algorithms to solve this efficiently.
– Preprocessing: precompute queries of special forms.
– Query: express input queries as combination of precomputed queries.
– Light preprocessing and fast query time.

Intra-procedural case: we exploit sparsity of control-flow graphs.
Inter-procedural case:

We assume function summaries are computed and are given in input.
We additionally exploit sparsity of call graphs.

5 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

Our contribution: algorithms to solve this efficiently.
– Preprocessing: precompute queries of special forms.
– Query: express input queries as combination of precomputed queries.
– Light preprocessing and fast query time.
Intra-procedural case: we exploit sparsity of control-flow graphs.

Inter-procedural case:
We assume function summaries are computed and are given in input.
We additionally exploit sparsity of call graphs.

5 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

Our contribution: algorithms to solve this efficiently.
– Preprocessing: precompute queries of special forms.
– Query: express input queries as combination of precomputed queries.
– Light preprocessing and fast query time.
Intra-procedural case: we exploit sparsity of control-flow graphs.
Inter-procedural case:

We assume function summaries are computed and are given in input.
We additionally exploit sparsity of call graphs.

5 / 17

Formulation and contribution

On-demand algebraic program analysis

Offline input: (can be preprocessed)
– a program P,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsP(i , j).

Exploiting the Sparseness of Control-flow and Call Graphs for
Efficient and On-demand Algebraic Program Analysis

5 / 17

Agenda

1 Context and contribution

2 Algorithms

3 Experiments and conclusion

6 / 17

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

7 / 17

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

– n = |V | ≈ |E |, cost per algebra operation is k :
– Tarjan’s algorithm:

Works on reducible flow graphs (≈ CFGs).
Answers all queries (i ,−) for a fixed i in O(nα(n) · k).
Doesn’t suit our on-demand setting:
– for n queries with different i ’s, naive repetition =⇒ Ω(n2) time.

7 / 17

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

– The paper presents two algorithms:

Algorithm #1: exploits nesting depth. See the paper.

Algorithm #2: exploits treewidth.

7 / 17

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

– The paper presents two algorithms:
Algorithm #1: exploits nesting depth. See the paper.

Algorithm #2: exploits treewidth.

7 / 17

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

– The paper presents two algorithms:
Algorithm #1: exploits nesting depth. See the paper.

Algorithm #2: exploits treewidth.

7 / 17

Treewidth of CFGs

Treewidth:
(Informally) a parameter that measures “tree-likeness” of a graph.

Small-treewidth graphs admit a tree decomposition with small bags.
Such decomposition enable us to successively break a graph into smaller

disconnected graphs separated by small cuts.
CFGs have constant treewidth (Thorup ’98).

8 / 17

Treewidth of CFGs

Treewidth:
(Informally) a parameter that measures “tree-likeness” of a graph.
Small-treewidth graphs admit a tree decomposition with small bags.
Such decomposition enable us to successively break a graph into smaller

disconnected graphs separated by small cuts.

CFGs have constant treewidth (Thorup ’98).

8 / 17

Treewidth of CFGs

Treewidth:
(Informally) a parameter that measures “tree-likeness” of a graph.
Small-treewidth graphs admit a tree decomposition with small bags.
Such decomposition enable us to successively break a graph into smaller

disconnected graphs separated by small cuts.
CFGs have constant treewidth (Thorup ’98).

8 / 17

Intra-procedural algorithm #2

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A,
– a tree decomposition T of G with small bags.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

Naive: n2 possible queries, precompute all of them.
=⇒ takes too much time and space.

Better: precompute only “special queries” having a certain form s.t.,

Expressiveness: a general query can be expressed with special queries.

Space: the number of special queries should be ≪ n2.

Time: total runtime should be small.

9 / 17

Intra-procedural algorithm #2

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A,
– a tree decomposition T of G with small bags.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

Naive: n2 possible queries, precompute all of them.
=⇒ takes too much time and space.

Better: precompute only “special queries” having a certain form s.t.,

Expressiveness: a general query can be expressed with special queries.

Space: the number of special queries should be ≪ n2.

Time: total runtime should be small.

9 / 17

Intra-procedural algorithm #2

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,
– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A,
– a tree decomposition T of G with small bags.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

Naive: n2 possible queries, precompute all of them.
=⇒ takes too much time and space.

Better: precompute only “special queries” having a certain form s.t.,

Expressiveness: a general query can be expressed with special queries.

Space: the number of special queries should be ≪ n2.

Time: total runtime should be small.

9 / 17

Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G .

Lemma

For any u, v in G , there there are bags bu, bv in T where every bag b on
Pbu ,bv separates u from v in G .

10 / 17

Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G .

Lemma

For any u, v in G , there there are bags bu, bv in T where every bag b on
Pbu ,bv separates u from v in G .

10 / 17

Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G .

Lemma

For any u, v in G , there there are bags bu, bv in T where every bag b on
Pbu ,bv separates u from v in G .

10 / 17

Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G .

Lemma

For any u, v in G , there there are bags bu, bv in T where every bag b on
Pbu ,bv separates u from v in G .

10 / 17

Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G .

Lemma

For any u, v in G , there there are bags bu, bv in T where every bag b on
Pbu ,bv separates u from v in G .

10 / 17

Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G .

Lemma

For any u, v in G , there there are bags bu, bv in T where every bag b on
Pbu ,bv separates u from v in G .

10 / 17

Intra-procedural algorithm #2

We look at the tree decomposition T of the CFG G .

Lemma

For any u, v in G , there there are bags bu, bv in T where every bag b on
Pbu ,bv separates u from v in G .

A way to break the query!
For any bag b ∈ Pbu ,bv , [[ρu,v]] =

⊕
w∈Vb

[[ρu,w]]⊗ [[ρw ,v]]

10 / 17

Intra-procedural algorithm #2 via tree decomposition

Idea:

Always choose b to be the least common ancestor bag of bu, bv in T .

Define “special queries” to be all pairs (u, v) where bu is an
ancestor/descendant of a bv .

Picking Vb = {2, 3, 6},
[[ρ11,10]] = ([[ρ11,2]]⊗ [[ρ2,10]])⊕ ([[ρ11,3]]⊗ [[ρ3,10]])⊕ ([[ρ11,6]]⊗ [[ρ6,10]])

11 / 17

Intra-procedural algorithm #2 via tree decomposition

Idea:

Always choose b to be the least common ancestor bag of bu, bv in T .

Define “special queries” to be all pairs (u, v) where bu is an
ancestor/descendant of a bv .

Picking Vb = {2, 3, 6},
[[ρ11,10]] = ([[ρ11,2]]⊗ [[ρ2,10]])⊕ ([[ρ11,3]]⊗ [[ρ3,10]])⊕ ([[ρ11,6]]⊗ [[ρ6,10]])

11 / 17

Intra-procedural algorithm #2 via tree decomposition

Idea:

Always choose b to be the least common ancestor bag of bu, bv in T .

Define “special queries” to be all pairs (u, v) where bu is an
ancestor/descendant of a bv .

Preprocessing: precompute all special queries.
Query (u, v):

Find bu and bv .

Let bLCA := LCA(bu, bv), the least common ancestor in T .

return
[[ρu,v]] =

⊕
w∈bLCA

[[ρu,w]]⊗ [[ρw ,v]].

Number of “special queries” = O(n · height of the TD).
Problem: if tree decomposition is too long =⇒ O(n2) special queries.

11 / 17

Intra-procedural algorithm #2 via tree decomposition

Idea:

Always choose b to be the least common ancestor bag of bu, bv in T .

Define “special queries” to be all pairs (u, v) where bu is an
ancestor/descendant of a bv .

Preprocessing: precompute all special queries.
Query (u, v):

Find bu and bv .

Let bLCA := LCA(bu, bv), the least common ancestor in T .

return
[[ρu,v]] =

⊕
w∈bLCA

[[ρu,w]]⊗ [[ρw ,v]].

Number of “special queries” = O(n · height of the TD).

Problem: if tree decomposition is too long =⇒ O(n2) special queries.

11 / 17

Intra-procedural algorithm #2 via tree decomposition

Idea:

Always choose b to be the least common ancestor bag of bu, bv in T .

Define “special queries” to be all pairs (u, v) where bu is an
ancestor/descendant of a bv .

Preprocessing: precompute all special queries.
Query (u, v):

Find bu and bv .

Let bLCA := LCA(bu, bv), the least common ancestor in T .

return
[[ρu,v]] =

⊕
w∈bLCA

[[ρu,w]]⊗ [[ρw ,v]].

Number of “special queries” = O(n · height of the TD).
Problem: if tree decomposition is too long =⇒ O(n2) special queries.

11 / 17

Intra-procedural algorithm #2 via tree + centroid decomp.

Solution: build a centroid decomposition T ′ of the tree decomposition T ,
which has height O(log n).

Apply previous slide with bLCA being LCA in T ′ not T .

Number of “special queries” = O(n · log n).
We precompute all special queries in O(n · log n · k).

12 / 17

Intra-procedural algorithm #2 via tree + centroid decomp.

Solution: build a centroid decomposition T ′ of the tree decomposition T ,
which has height O(log n).

Apply previous slide with bLCA being LCA in T ′ not T .

Number of “special queries” = O(n · log n).
We precompute all special queries in O(n · log n · k).

12 / 17

Intra-procedural algorithm #2 via tree + centroid decomp.

Solution: build a centroid decomposition T ′ of the tree decomposition T ,
which has height O(log n).

Apply previous slide with bLCA being LCA in T ′ not T .

Number of “special queries” = O(n · log n).
We precompute all special queries in O(n · log n · k).

12 / 17

Inter-procedural algorithm

– We extend our algorithm by exploiting sparsity of the call graph.
– Capture the sparsity using treedepth.

See the paper for details.

13 / 17

Agenda

1 Context and contribution

2 Algorithms

3 Experiments and conclusion

14 / 17

Experiments

1. IFDS dataflow analyses (reachability, uninitialized variables, null-ptr):

Each algebra element is the graph representation of IFDS.

Used programs from DaCapo benchmarks.

Comparison of our algorithms vs. running Tarjan’s algo. at every query:

0 20000 40000 60000 80000 100000120000
Benchmark size

101

102

103

104

AR

Dead-code elimination

0 20000 40000 60000 80000 100000120000
Benchmark size

101

102

103

104

105
AR

Uninitialized variables

0 20000 40000 60000 80000 100000120000
Benchmark size

101

102

103

104

AR

Null-pointer

15 / 17

Experiments

2. Analysis of boolean programs:

Each algebra element is a state transformer represented by a BDD.

Used boolean programs generated from applying Predicate
Abstraction on Windows drivers.

Comparison of our algorithms vs. running Tarjan’s algo. at every query:

40000 60000 80000 100000 120000
Benchmark size

101

102

103

104

AR
Predicate abstraction

16 / 17

Conclusion

Fast algorithms for on-demand algebraic program analysis.

Exploiting sparseness of CFGs (via treewidth) to handle the
intra-procedural queries.

Exploiting sparseness of CGs (via treedepth) to extend the solution to
the inter-procedural case.

Experiments showing efficiency in comparison with using Tarjan’s
algorithm.

17 / 17

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

1 / 4

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

Existing solutions (n = |V | ≈ |E |, cost per algebra operation is k):

—Kleene’s NFA-to-regexp translation:
Works for arbitrary graphs.
Precomputes all queries in O(n3 · k). Too slow.

—Tarjan’s algorithm:
Works on reducible flow graphs (≈ CFGs).
Answers all queries (i ,−) for a fixed i in O(nα(n) · k).
Doesn’t suit our on-demand setting:
– for n queries with different i ’s, naive repetition =⇒ Ω(n2) time.

1 / 4

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

Existing solutions (n = |V | ≈ |E |, cost per algebra operation is k):
—Kleene’s NFA-to-regexp translation:

Works for arbitrary graphs.
Precomputes all queries in O(n3 · k). Too slow.

—Tarjan’s algorithm:
Works on reducible flow graphs (≈ CFGs).
Answers all queries (i ,−) for a fixed i in O(nα(n) · k).
Doesn’t suit our on-demand setting:
– for n queries with different i ’s, naive repetition =⇒ Ω(n2) time.

1 / 4

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

Existing solutions (n = |V | ≈ |E |, cost per algebra operation is k):
—Kleene’s NFA-to-regexp translation:

Works for arbitrary graphs.
Precomputes all queries in O(n3 · k). Too slow.

—Tarjan’s algorithm:
Works on reducible flow graphs (≈ CFGs).
Answers all queries (i ,−) for a fixed i in O(nα(n) · k).
Doesn’t suit our on-demand setting:
– for n queries with different i ’s, naive repetition =⇒ Ω(n2) time.

1 / 4

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

—The paper presents two algorithms:

Algorithm #1:
Operates directly on the structure of CFG.
Assumes programs have constant nesting depth.
Preprocessing: O(n · log log n · k); query O(k).

Algorithm #2:
Operates on the “tree decomposition” of the CFG.
Assumes CFGs have constant treewidth: more robust assumption.
Preprocessing: O(n · log n · k); query O(k).

1 / 4

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

—The paper presents two algorithms:
Algorithm #1:

Operates directly on the structure of CFG.
Assumes programs have constant nesting depth.
Preprocessing: O(n · log log n · k); query O(k).

Algorithm #2:
Operates on the “tree decomposition” of the CFG.
Assumes CFGs have constant treewidth: more robust assumption.
Preprocessing: O(n · log n · k); query O(k).

1 / 4

Intra-procedural algorithms

Intra-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a CFG G = (V ,E) of a single function,

– an algebra (A,⊕,⊗,⊛, 0, 1),
– a semantic function [[·]] : E → A.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = PathsG (i , j).

—The paper presents two algorithms:
Algorithm #1:

Operates directly on the structure of CFG.
Assumes programs have constant nesting depth.
Preprocessing: O(n · log log n · k); query O(k).

Algorithm #2:
Operates on the “tree decomposition” of the CFG.
Assumes CFGs have constant treewidth: more robust assumption.
Preprocessing: O(n · log n · k); query O(k).

1 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:

Structurally recursive: before processing P, process its subprograms first.
For each sub-program, precompute queries only at the top-level.

2 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:
Structurally recursive: before processing P, process its subprograms first.

For each sub-program, precompute queries only at the top-level.

2 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:
Structurally recursive: before processing P, process its subprograms first.
For each sub-program, precompute queries only at the top-level.

2 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:
Structurally recursive: before processing P, process its subprograms first.
For each sub-program, precompute queries only at the top-level.

⟦ ⟧

⟦ ⟧ ⟦ ⟧

⟦ ⟧

⟦ ⟧

2 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:
Structurally recursive: before processing P, process its subprograms first.
For each sub-program, precompute queries only at the top-level.

⟦ ⟧

⟦ ⟧ ⟦ ⟧

⟦ ⟧

⟦ ⟧

⟦ ⟧ ⟦ ⟧

⟦ ⟧ ⟦ ⟧

⟦ ⟧ ⟦ ⟧

⟦ ⟧

2 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:
Structurally recursive: before processing P, process its subprograms first.
For each sub-program, precompute queries only at the top-level.
Build a sqrt-tree data structure to efficiently answer same-level queries.

2 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:
Structurally recursive: before processing P, process its subprograms first.
For each sub-program, precompute queries only at the top-level.
Build a sqrt-tree data structure to efficiently answer same-level queries.

To answer a query (i , j), a path i ⇝ j either:
Visits some node at the top-level,

— can be answered with the sqrt-tree.

Or it doesn’t

— reduces to a query in a subprogram with smaller depth.
Answers for different paths are combined with ⊕ and ⊗
Efficiency relies on having a small nesting depth.

2 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:
Structurally recursive: before processing P, process its subprograms first.
For each sub-program, precompute queries only at the top-level.
Build a sqrt-tree data structure to efficiently answer same-level queries.

To answer a query (i , j), a path i ⇝ j either:
Visits some node at the top-level,

— can be answered with the sqrt-tree.
Or it doesn’t

— reduces to a query in a subprogram with smaller depth.

Answers for different paths are combined with ⊕ and ⊗
Efficiency relies on having a small nesting depth.

2 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:
Structurally recursive: before processing P, process its subprograms first.
For each sub-program, precompute queries only at the top-level.
Build a sqrt-tree data structure to efficiently answer same-level queries.

To answer a query (i , j), a path i ⇝ j either:
Visits some node at the top-level,

— can be answered with the sqrt-tree.
Or it doesn’t

— reduces to a query in a subprogram with smaller depth.
Answers for different paths are combined with ⊕ and ⊗

Efficiency relies on having a small nesting depth.

2 / 4

Intra-procedural algorithm #1

P := σ | P;P | branchl P,P, . . . ,P endl | loopl P endl |
breakl | continuel

Preprocessing:
Structurally recursive: before processing P, process its subprograms first.
For each sub-program, precompute queries only at the top-level.
Build a sqrt-tree data structure to efficiently answer same-level queries.

To answer a query (i , j), a path i ⇝ j either:
Visits some node at the top-level,

— can be answered with the sqrt-tree.
Or it doesn’t

— reduces to a query in a subprogram with smaller depth.
Answers for different paths are combined with ⊕ and ⊗
Efficiency relies on having a small nesting depth.

2 / 4

Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1, . . . , fm},EC), (fi , fj) ∈ EC ⇐⇒ {fi calls fj}.

Treedepth:
(Informally) measures for a graph how similar it is to a shallow tree.
Small-treedepth graphs admit a depth decomposition with small depth.
Similar to treewidth, such decomposition enable us to successively divide

a graph into smaller components separated by small cuts.
We assume CGs have small treedepth w.r.t. program size; justified

experimentally.
We exploit this assumption to efficiently solve the inter-procedural case.

3 / 4

Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1, . . . , fm},EC), (fi , fj) ∈ EC ⇐⇒ {fi calls fj}.
Treedepth:
(Informally) measures for a graph how similar it is to a shallow tree.

Small-treedepth graphs admit a depth decomposition with small depth.
Similar to treewidth, such decomposition enable us to successively divide

a graph into smaller components separated by small cuts.
We assume CGs have small treedepth w.r.t. program size; justified

experimentally.
We exploit this assumption to efficiently solve the inter-procedural case.

3 / 4

Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1, . . . , fm},EC), (fi , fj) ∈ EC ⇐⇒ {fi calls fj}.
Treedepth:
(Informally) measures for a graph how similar it is to a shallow tree.
Small-treedepth graphs admit a depth decomposition with small depth.
Similar to treewidth, such decomposition enable us to successively divide

a graph into smaller components separated by small cuts.

We assume CGs have small treedepth w.r.t. program size; justified
experimentally.

We exploit this assumption to efficiently solve the inter-procedural case.

3 / 4

Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1, . . . , fm},EC), (fi , fj) ∈ EC ⇐⇒ {fi calls fj}.
Treedepth:
(Informally) measures for a graph how similar it is to a shallow tree.
Small-treedepth graphs admit a depth decomposition with small depth.
Similar to treewidth, such decomposition enable us to successively divide

a graph into smaller components separated by small cuts.
We assume CGs have small treedepth w.r.t. program size; justified

experimentally.

We exploit this assumption to efficiently solve the inter-procedural case.

3 / 4

Call graphs (CGs) and treedepth

Call graph (CG): C = ({f1, . . . , fm},EC), (fi , fj) ∈ EC ⇐⇒ {fi calls fj}.
Treedepth:
(Informally) measures for a graph how similar it is to a shallow tree.
Small-treedepth graphs admit a depth decomposition with small depth.
Similar to treewidth, such decomposition enable us to successively divide

a graph into smaller components separated by small cuts.
We assume CGs have small treedepth w.r.t. program size; justified

experimentally.
We exploit this assumption to efficiently solve the inter-procedural case.

3 / 4

Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a augmented graph Ĝ = (V , Ê) (union of CFGs + call edges),

– an algebra (A,⊕,⊗,⊛, 0, 1), a semantic function [[·]] : Ê → A,
– for each function fi , a value [[fi]] summarizing fi ’s execution.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = Paths

Ĝ
(i , j).

Function summaries are given → no return edges → same as the intra-
procedural case, but on a larger graph with different structure.

Preprocessing:
Run the intra-procedural algorithm for each function.
For each CG edge (fi , fj), compute a value [[(fi , fj)]] summarizing all all

paths lying in fi with only last vertex in fj .
Break a query into: intra-procedural queries, and call-graph queries.
Answering call-graph queries: find depth decomp. → convert to tree de-
comp → apply treewidth-based algorithm. Done!

4 / 4

Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a augmented graph Ĝ = (V , Ê) (union of CFGs + call edges),

– an algebra (A,⊕,⊗,⊛, 0, 1), a semantic function [[·]] : Ê → A,
– for each function fi , a value [[fi]] summarizing fi ’s execution.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = Paths

Ĝ
(i , j).

Function summaries are given → no return edges → same as the intra-
procedural case, but on a larger graph with different structure.

Preprocessing:
Run the intra-procedural algorithm for each function.
For each CG edge (fi , fj), compute a value [[(fi , fj)]] summarizing all all

paths lying in fi with only last vertex in fj .
Break a query into: intra-procedural queries, and call-graph queries.
Answering call-graph queries: find depth decomp. → convert to tree de-
comp → apply treewidth-based algorithm. Done!

4 / 4

Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a augmented graph Ĝ = (V , Ê) (union of CFGs + call edges),

– an algebra (A,⊕,⊗,⊛, 0, 1), a semantic function [[·]] : Ê → A,
– for each function fi , a value [[fi]] summarizing fi ’s execution.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = Paths

Ĝ
(i , j).

Function summaries are given → no return edges → same as the intra-
procedural case, but on a larger graph with different structure.
Preprocessing:

Run the intra-procedural algorithm for each function.
For each CG edge (fi , fj), compute a value [[(fi , fj)]] summarizing all all

paths lying in fi with only last vertex in fj .
Break a query into: intra-procedural queries, and call-graph queries.
Answering call-graph queries: find depth decomp. → convert to tree de-
comp → apply treewidth-based algorithm. Done!

4 / 4

Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a augmented graph Ĝ = (V , Ê) (union of CFGs + call edges),

– an algebra (A,⊕,⊗,⊛, 0, 1), a semantic function [[·]] : Ê → A,
– for each function fi , a value [[fi]] summarizing fi ’s execution.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = Paths

Ĝ
(i , j).

Function summaries are given → no return edges → same as the intra-
procedural case, but on a larger graph with different structure.
Preprocessing:
Run the intra-procedural algorithm for each function.

For each CG edge (fi , fj), compute a value [[(fi , fj)]] summarizing all all
paths lying in fi with only last vertex in fj .

Break a query into: intra-procedural queries, and call-graph queries.
Answering call-graph queries: find depth decomp. → convert to tree de-
comp → apply treewidth-based algorithm. Done!

4 / 4

Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a augmented graph Ĝ = (V , Ê) (union of CFGs + call edges),

– an algebra (A,⊕,⊗,⊛, 0, 1), a semantic function [[·]] : Ê → A,
– for each function fi , a value [[fi]] summarizing fi ’s execution.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = Paths

Ĝ
(i , j).

Function summaries are given → no return edges → same as the intra-
procedural case, but on a larger graph with different structure.
Preprocessing:
Run the intra-procedural algorithm for each function.
For each CG edge (fi , fj), compute a value [[(fi , fj)]] summarizing all all

paths lying in fi with only last vertex in fj .

Break a query into: intra-procedural queries, and call-graph queries.
Answering call-graph queries: find depth decomp. → convert to tree de-
comp → apply treewidth-based algorithm. Done!

4 / 4

Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a augmented graph Ĝ = (V , Ê) (union of CFGs + call edges),

– an algebra (A,⊕,⊗,⊛, 0, 1), a semantic function [[·]] : Ê → A,
– for each function fi , a value [[fi]] summarizing fi ’s execution.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = Paths

Ĝ
(i , j).

Function summaries are given → no return edges → same as the intra-
procedural case, but on a larger graph with different structure.
Preprocessing:
Run the intra-procedural algorithm for each function.
For each CG edge (fi , fj), compute a value [[(fi , fj)]] summarizing all all

paths lying in fi with only last vertex in fj .
Break a query into: intra-procedural queries, and call-graph queries.

Answering call-graph queries: find depth decomp. → convert to tree de-
comp → apply treewidth-based algorithm. Done!

4 / 4

Inter-procedural algorithm

Inter-procedural on-demand algebraic program analysis

Offline input: (can be preprocessed)
– a augmented graph Ĝ = (V , Ê) (union of CFGs + call edges),

– an algebra (A,⊕,⊗,⊛, 0, 1), a semantic function [[·]] : Ê → A,
– for each function fi , a value [[fi]] summarizing fi ’s execution.
Online input: a series of queries (i , j), each is a pair of program points.
Output: for each query (i , j), compute [[ρi ,j]] where ⟨ρi ,j⟩ = Paths

Ĝ
(i , j).

Function summaries are given → no return edges → same as the intra-
procedural case, but on a larger graph with different structure.
Preprocessing:
Run the intra-procedural algorithm for each function.
For each CG edge (fi , fj), compute a value [[(fi , fj)]] summarizing all all

paths lying in fi with only last vertex in fj .
Break a query into: intra-procedural queries, and call-graph queries.
Answering call-graph queries: find depth decomp. → convert to tree de-
comp → apply treewidth-based algorithm. Done!

4 / 4

	Context and contribution
	Algorithms
	Experiments and conclusion
	Appendix

